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Abstract

Wavefront sensors (WFS) use intensity measurements to estimate the phase of

an incident optical field for applications such as high-quality surface measurements

and atmospheric compensation with adaptive optics (AO). Shack-Hartmann (SH)

WFS’s use intensity measurements at the focal plane to estimate local wavefront tilts,

which can be reconstructed into wavefront estimates. Self-referencing-interferometer

(SRI) WFS’s use pupil-plane interferogram-intensity measurements to estimate the

phase of the incident optical field.

The SRI and SH WFS’s have strengths and weaknesses that turn out to com-

plement each other quite well over a range of operating conditions. Specifically, the

difference between the mathematical formulation of SRI measurements and the actual

phase at DM actuators has been shown to be insensitive to scintillation. In contrast,

the SH WFS’s formulation error can be significant in strong scintillation. Conversely,

the SH WFS has actually shown better performance than the SRI in cases of low

scintillation strength and large subapertures relative to atmospheric coherence width.

Together, the SRI and the SH WFS provide better performance over a wider range

of atmospheric conditions than either WFS could do on its own.

This document reports results of wave-optics simulations used to test the perfor-

mance of a hybrid WFS designed to combine the SRI and SHWFS’s in an optimal way.

Optimal hybrid-WFS design required a thorough analysis of the noise characteristics

of each WFS to produce noise models that assist in the design of an optimal phase-

estimation algorithm. Feasible architectures and algorithms for combining WFS’s

were chosen, and the noise models of the individual WFS’s were combined to form a

model for the noise-induced error of the resulting hybrid WFS. The hybrid WFS and

phase-estimation algorithm developed through this work showed improvement over a

comparable stand-alone SRI in open-loop wave-optics simulations.
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Shack-Hartmann and Interferometric

Hybrid Wavefront Sensor

I. Introduction

Adaptive optics (AO) systems correct wavefront distortions caused by propagation

through turbulent media. Figure 1 shows a diagram of an AO system designed to

correct optical distortions caused by propagation of light through the earth’s atmo-

sphere. In this system, a beacon provides a reference wavefront that is corrupted

by atmospheric turbulence before entering the AO system where optics collimate the

light from the incoming beacon and a tilt sensor combined with a fast steering mirror

(FSM) work together to track the beacon and keep it centered in the system field

of view. After the FSM, the incoming light encounters the deformable mirror (DM),

which works to correct the wavefront distortions caused by propagation through the

atmospheric turbulence. A hybrid wavefront sensor (WFS) combines measurements

from two different WFS’s into estimates of the wavefront distortions, and a comput-

erized control system then uses the wavefront measurements to command actuators

on the DM, improving the performance of the primary optical system. Two WFS’s

used for AO are the Shack-Hartmann (SH) WFS and the self-referencing interferom-

eter (SRI). Shack-Hartmann WFS’s use intensity measurements at the focal plane to

estimate local wavefront tilts, which can be reconstructed into wavefront estimates.

Self-referencing interferometers use pupil-plane interferogram-intensity measurements

to estimate the real and imaginary parts of the incident optical field, which then pro-

vide a means of estimating the optical phase. The SRI and SH WFS’s have strengths

and weaknesses that turn out to complement each other quite well over a range of

operating conditions. This dissertation presents a hybrid WFS optimally designed to

handle noise-induced phase-errors. In open-loop computer simulations, the proposed

hybrid WFS performs better than a comparable stand-alone SRI.

1



Figure 1: AO system with a hybrid wavefront sensor

The remainder of this introductory chapter defines the problem, describes the

solution, and states the goals of the research. The dissertation is organized into

seven chapters. Background information necessary for understanding the problem

and solution are presented in Ch. II, and the review of related research is presented

in Ch. III. In Ch. IV, a model is presented that predicts centroid error resulting from

atmospherically induced fluctuating intensity coupled with photon noise in a Shack-

Hartmann WFS. Chapter V presents a model for photon-noise-induced phase error

in the SRI, which shows that SRI measurements actually do depend on scintillation

strength. In Ch. VI, the two noise models are used to develop a maximum-likelihood,

weighted-average approach to combining the SH and SRI WFS’s that shows improved

performance relative to a stand-alone SRI in open-loop computer simulations. Finally,

Ch. VII summarizes conclusions of this dissertation, discusses challenges encountered

during the course of this research, and suggests areas for future work.

1.1 Problem Definition

Historically, the choice of WFS has been heavily influenced by the intended

application’s operating conditions. For example, the bulk of the atmosphere is con-

2



centrated at low altitude in a relatively thin layer, so refractive index fluctuations due

to atmospheric turbulence have the greatest impact on light propagating through the

first few kilometers above sea level. Also, atmospheric refractive index fluctuations

are relatively weak and do not cause extreme wavefront distortions unless the waves

experience thick layers of strong turbulence or have long propagation paths over which

to accumulate large phase deviations. Therefore, astronomical telescopes are often lo-

cated at high altitudes (in a thin atmosphere) and look more or less straight up to

avoid thick layers of atmospheric turbulence located far from the imaging system’s

light-collecting aperture. In favorable conditions, scintillation, which is the occur-

rence of random amplitude fluctuations in the received optical field, can be neglected

without significant performance implications. Also, astronomical AO systems often

use spatially incoherent beacons with limited photon flux (natural stars in the early

days of AO) and therefore favor a WFS that can operate with low levels of incoherent

light. The Shack-Hartmann WFS, which provides consistent, reliable performance in

weak scintillation with dim beacons, accordingly became the most reasonable choice

of WFS for astronomical AO. However, as AO systems were pushed to deal with a

broader range of operating conditions, limitations of the SH WFS became evident, es-

pecially for light propagating over long propagation paths through constant-strength

turbulence.

Turbulence associated with long, horizontal propagation paths causes scintil-

lation, which in turn causes problems for the SH WFS and can severely limit the

effectiveness of applications such as the Airborne Laser (ABL) [5]. The ABL flies

at high altitude searching for recently launched missiles to then track and shoot

down with its onboard high-energy laser (HEL). The ABL and other applications,

such as astronomical AO with a laser guide star, use an artificial beacon with quasi-

monochromatic light, which suggests the possibility that coherent WFS’s might be

effective. The SH WFS’s poor performance in strong turbulence and the availability

of a powerful, narrow-band beacon motivated the development of the SRI. The SRI is

a relatively new approach to wavefront sensing that promises to extend AO operating
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regimes beyond weak fluctuations of the propagation medium and possibly provide

drastic performance improvement in optical systems operating over long, horizontal

propagation paths. However, it is unrealistic to expect that the SRI can replace the

SH WFS in all AO applications. For example, applications that experience broad-

band, extended, and dim beacons are much better served by the SH WFS. While

lasers can provide narrow-band, high-energy beacons, these beacons can still become

extended.

The technical problems addressed by this research are interrelated, and several

are identified here. The primary problem motivating this research is the need for a

wavefront sensor that can operate over a wider range of scintillation strengths, like

the SRI can do, and still be able to perform with broadband, extended, and poten-

tially dim beacons, which the SH WFS can do. The specific solution presented by

this research is that of optimally combining a SH WFS with an SRI and evaluat-

ing the resulting hybrid WFS’s performance over a range of scintillation strengths,

atmospheric conditions, and beacon light levels1. However, optimal design of a hy-

brid WFS produces its own set of requirements. This was evident after the review

of wavefront-sensing and AO research revealed a need for particular noise models.

A summary of the identified research gaps is briefly discussed here with details and

specific citations deferred to Ch. III. First, while much research has been reported on

error sources in the SH WFS, none of it addressed the impact of combining sensor

noise with classical intensity fluctuations such as that caused by scintillation. Also,

analytical models developed for the Strehl ratio of the SRI predicted it would be

insensitive to scintillation, but laboratory experiments showed that SRI performance

does depend on scintillation strength. A potential reason for the disconnect between

analytical work and experimental work with the SRI is that the analytical work only

studied the impact of field-estimation errors, whereas experimental work can only

investigate the impact of phase-estimation errors. Also, as for the SH WFS, no SRI

1Performance with extended beacons is only addressed by the inclusion of a SH WFS in the
hybrid design; evaluation of hybrid performance with extended beacons is left for future work.
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research has been reported that studies the combined impact of sensor noise and scin-

tillation. Therefore, the need for new SH-WFS and SRI noise models was identified

as an intermediate problem requiring solution before the specific problem of optimally

designing a hybrid WFS could be properly addressed.

1.2 Proposed Solution and Approach

Because the SRI and SH WFS’s perform in such complementary ways, it is

natural to speculate that they may perform better if they are combined into a hybrid

WFS. This dissertation reports work that evaluated whether a hybrid WFS combining

a SH WFS and an SRI could perform better than either sensor alone over a range of

scintillation strengths and beacon light levels.

Due to the large number of practical issues, random variables, and design pa-

rameters involved, finding the optimal approach to implementing a hybrid WFS is

a difficult problem. The problem is made more difficult by the fact that a hybrid

WFS requires splitting of the available light between two WFS’s, which can decrease

performance if not done properly. Therefore, proper design of a hybrid WFS required

noise models based on a thorough analysis of the noise characteristics of each compo-

nent WFS in order to ensure the optimal use of available light. As mentioned above,

previously reported noise models for the SH WFS and the SRI were not sufficient

for optimally designing and evaluating a hybrid WFS over a range of scintillation

strengths and beacon light levels. Therefore, better models that accounted for the

combined impact of sensor noise and scintillation on phase-estimation errors had to

be developed before maximum-likelihood estimation techniques could be employed to

design the hybrid WFS.

To maintain the highest possible degree of design flexibility, this work employed

computer simulation to evaluate the performance of the hybrid WFS and compare it

to a stand-alone WFS. Computer simulations, in contrast to hardware experiments,

provided flexibility in design choices for hybrid architectures and enabled robust test-

ing of the hybrid WFS’s phase-estimation algorithms. Simulations were also a critical
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part of validating the noise models developed in this work and enabled testing of the

hybrid WFS over a wide range of atmospheric parameters and beacon characteristics.

Furthermore, computer simulations enabled investigation of centroid error in condi-

tions that could not be reproduced experimentally, for example photon levels that are

too low to guarantee shot-noise limited performance.

1.3 Goals of Proposed Research

The specific, primary goal of this work was to combine a SH WFS with an SRI

to achieve better open-loop performance than a comparable stand-alone WFS. Better

performance was characterized by decreased phase errors, increased phase-estimation

Strehl ratio, and decreased variation in estimation Strehl ratio (see Ch. VI). An

intermediate goal of this work was the development of analytical models for photon-

noise-induced phase-estimation errors for the SH and the SRI WFS’s that agreed

reasonably well with computer simulations. The parameter used to compare the

noise models with both Monte Carlo and wave-optics simulations was error variance.

For the SH WFS, the model predicted the centroid-error variance (see Ch. IV), which

was converted into phase-error variance for the hybrid analysis (see Ch. VI). For the

SRI, the model directly predicted phase-error variance (see Ch. V).
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II. Background

Many practical issues, random variables, and design parameters are involved in deter-

mining an optimal approach to implementing an SRI/SH hybrid WFS. This chapter

provides background information that was essential for properly understanding and

defining this problem and ultimately developing a solution. First, to systematically

address the design challenges unique to each WFS used in the hybrid WFS, computer

simulation was identified as the most appropriate method for evaluating WFS perfor-

mance in a variety of operating condtions. This required the methods of wave-optics,

which are discussed in Sec. 2.1, to simulate the effects of atmospheric turbulence,

discussed in Sec. 2.4. Also, the SRI and SH WFS’s both have very different responses

to photon noise and different methods of estimating phase. The details of how the SH

WFS estimates phase are discussed in Sec. 2.5.1, and the SRI’s function is discussed

in Sec. 2.6. Optimal hybrid-WFS design also required maximum-likelihood analysis,

which is discussed in Sec. 2.7. Finally, SH slope measurements must be reconstructed

into phase estimates and SRI phase estimates must be unwrapped. Because wavefront

reconstruction and phase unwrapping are important for effective hybrid-WFS design,

they are discussed in Sec. 2.8.

2.1 Wave Optics

2.1.1 The Wave-Particle Duality of Light. James Clerk Maxwell derived a

system of vector equations that unified the theories of electricity and magnetism with

mathematical elegance and suggested that light is composed of electro-magnetic (EM)

waves [14, 38, 48]. Despite the astonishing accuracy of Maxwell’s treatment of EM

waves in predicting many observed behaviors of light, it is important to point out

that some phenomena can only be accounted for by considering light as also con-

sisting of massless particles with finite energy called photons. While experiments

involving interference and diffraction have proven the classical wave nature of light,

Planck’s formula for blackbody radiation, Einstein’s explanation of the photoelectric

effect, and Compton scattering have each independently proven the particle nature
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of light [43]. A full explanation of light propagation and its interaction with matter

requires this wave-particle duality. The particle view of light best explains its emis-

sion and absorption and is therefore helpful in studying its generation and detection.

Photo-detection, which is critically important to this work, requires the acknowledge-

ment of the particle nature of light, which is best treated statistically. Therefore,

this work adopts the semi-classical model of photo-electric detection, which provides

a highly physical means for describing the interaction of light with matter [34]. In the

semi-classical model, EM fields are treated classically (i.e. as a wave using Maxwell’s

equations) until they interact with a solid-state photodetector [34].

2.1.2 Light as an Electromagnetic Wave. As the name implies, electro-

magnetic waves involve the interplay of electricity and magnetism. This fact is so

commonly accepted in modern times that it is easy to forget that until the work

of Gauss, Ampere, and Faraday in the early 1800’s, electricity and magnetism were

considered to be independent of one another and in no way associated with the prop-

agation of light. Even scientists who rejected Newton’s corpuscular theory of light in

favor of a wave theory thought that waves required a material medium through which

to propagate [20]. But then Maxwell transformed Gauss’s, Ampere’s, and Faraday’s

work into a set of four coupled vector equations describing EM waves capable of prop-

agating through free space and dense media [14,37]. When the particular assumptions

of free space, which are discussed in greater detail in the next subsection, are applied

to Maxwell’s equations, they lead to a vector wave equation that shows that light

propagates in vacuum at a velocity c given by

c =
1√
µ0ǫ0

, (1)

where ǫ0 is the permittivity of free space (i.e. vacuum) and µ0 is the permeability of

free space [38]. Of course, now the symbol c is almost universally recognized as the

speed of light in vacuum, but Maxwell had no reason to suspect that when he carried

out the computation from Eq. (1) using values for ǫ0 and µ0 from work Kohlrausch and
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Weber had done based solely on electrical and magnetic experiments [38]. The value

he found was so close to Fizeau’s measurement of the speed of light that it prompted

Maxwell to suggest that, “light itself ... is an electromagnetic disturbance in the form

of waves propagated through the electromagnetic field according to electromagnetic

laws,” (quoted by Hecht in [38]). Soon after, experiments by Hertz provided empirical

evidence of this idea, and now Maxwell’s equations are the accepted first principles

for deriving expressions to explain the classical wave nature of light [14]. With this

background as motivation, all that remains is to apply Maxwell’s equations to develop

useful expressions for the wave behavior of light, which is done conceptually in the

following sections leaving coverage of the mathematical rigor to texts devoted to the

subject (for example [14, 35, 37, 38]).

2.1.3 Wave Equations for Optics. Five fundamental quantities directly

traceable to the work of Gauss, Ampere, and Faraday describe the interplay between

the electric and magnetic fields. These are the electric field intensity E with units of

newtons per coulomb (N/C) or equivalently volts per meter (V/m), the displacement

or electric flux densityD with units of C/m2, the magnetic field intensityH with units

of amperes per meter (A/m), the magnetic flux density B with units of tesla (T) or

equivalently webers per square meter (Wb/m2 = N/A·m), and the current density J

with units of A/m2 [37,77]. For a linear, homogeneous, and isotropic medium through

which light propagates, these five quantities are related to one another through the

material (or constitutive) relations

J = σE,

D = ǫE, and (2)

B = µH,

where σ is the material’s electrical conductivity with units of siemens (S = V/A), µ is

the material’s magnetic permeability with units of N/A2, and ǫ is the material’s elec-

trical permittivity with units of farads per meter (F/m = C/V·m) [14,77]. Maxwell’s
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equations in point form are

∇×E = −∂B
∂t

(3)

∇×H = J +
∂D

∂t
(4)

∇ ·D = ρv (5)

∇ ·B = 0, (6)

where ∇× is the vector curl operator, ∇· is the divergence operator, ∂x/∂t represents
the time derivative of x, and ρv is volume charge density [37]. Equation (3) is Faraday’s

Law, Eq. (4) is Ampere’s law modified by Maxwell to remain consistent with the

continuity equation ∇ · J = ∂ρv/∂t, Eq. (5) is Gauss’s law for electric fields, and

Eq. (6) is Gauss’s law for magnetic fields, which is simply a statement that no magnetic

monopoles have ever been found to exist in nature [20, 37].

The EM waves associated with optical wavelengths (visible to long-wave in-

frared) allow a few simplifying assumptions that apply in a wide range of physical

conditions and allow Maxwell’s equations to be combined into a single vector equation.

These assumptions are

1. Any diffracting structures are large compared to the wavelength of
the light.

2. Optical fields are not observed near diffracting structures (relative to
wavelength).

3. The propagation medium is linear ⇒ propagation can be treated as
a linear transformation.

4. The propagation medium is homogeneous ⇒ permittivity ǫ is con-
stant.

5. The propagation medium is isotropic⇒ propagation does not depend
on the direction of polarization.

6. The propagation medium is non-dispersive ⇒ ǫ is independent of
wavelength λ.

7. The propagation medium is non-magnetic ⇒ the permeability µ is
the same as for vacuum.
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After applying these assumptions, Maxwell’s four coupled vector equations lead to

a single, second-order differential vector wave equation that is obeyed by both EM

fields E and H as well as their associated flux densities [35, 37]. If the additional

restriction is imposed that the propagating medium is also a dielectric, meaning it

has no charges and J = 0, then the vector wave equation simplifies to the immensely

useful scalar wave equation written as

∇2U(r, t)− n2

c2
∂2

∂t2
U(r, t) = 0, (7)

where U(r, t) is a generic scalar field that can represent any single component of

the vector fields E and H , ∇2 is the Laplacian operator, n is the refractive index

of the propagating medium, and as mentioned previously c is the speed of light in

vacuum [14,35]. Equation (7) is in the form of the standard differential wave equation

with phase velocity given by

vp =
c

n
. (8)

The index of refraction gets its name from the method of computing it for a given

material as the ratio of the angle of incidence to the angle of refraction of light passing

into the material from vacuum [38]. The index of refraction is also equal to the ratio

of the velocity of light in vacuum to the velocity of light in the material, so the index

of refraction also gives the velocity of light traveling through the material relative to

the fundamental constant c [14]. One more expression for the refractive index comes

from definitions of the relative permittivity (or dielectric constant) ǫR = ǫ/ǫ0 and

relative permeability µR = µ/µ0. Combining Eqs. (1) and (8) results in the refractive

index expressed as

n =
√
ǫRµR. (9)

The generic scalar field U(r, t) in Eq. (7) can refer to any of the four field quantities

in Maxwell’s equations under the assumptions enumerated on p. 10. Since, under

these assumptions, the scalar wave equation fully describes any component of either
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the magnetic or electric field of an optical EM wave, U(r, t) typically symbolizes a

general optical field [35].

When the light of interest is monochromatic, meaning that it consists of a single

frequency ν or wavelength λ= c/ν, the scalar wave equation becomes independent of

time. The time-independent form of the scalar wave equation is called the Helmholtz

equation and is written as

(∇2 + k2)U(r) = 0, (10)

where k is the magnitude of the propagation vector k, which is commonly referred

to as the optical wave number. The optical wave number is defined in terms of the

wavelength as [14, 35]

k = 2π/λ. (11)

2.1.4 The Angular Spectrum. A monochromatic plane wave propagating

in free space in a direction given by the propagation vector k with direction cosines

(α, β, γ) has the complex representation

P (x, y, z) = exp(jk · r) = ej
2π
λ
(αx+βy)ej

2π
λ
γz, (12)

where r = (x, y, z) is a Cartesian coordinate vector. Substituting Eq. (12) into

Eq. (10) shows that a plane wave is a valid solution of the Helmholtz equation. A

plane wave described by Eq. (12) is a complex sinusoid with spatial frequencies in the

x and y directions given by

fX =
α

λ

fY =
β

λ
. (13)

If waves due to some unspecified system of monochromatic source(s) traveling with

one component of k in the positive-z direction combine on a transverse (x, y) plane at

z = 0, the resulting complex scalar field U(x, y; 0) can be represented as the sum of
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plane waves weighted by coefficients A(fX , fY ; 0) over all spatial frequencies fX and

fY in the z = 0 plane [35]. This formulation adopts the convention of assigning the

z axis as the optic axis and observing optical fields in planes perpendicular to the

optic axis. Using Eqs. (12) and (13), the angular spectrum representation of such an

optical field is given by

U(x, y; 0) =

∫

−∞

∞
∫

A(fX , fY ; 0) exp [j2π(fXx+ fY y)] dfXdfY , (14)

which expresses U(x, y; 0) as the inverse Fourier transform of A(fX , fY ; 0) where the

eigenfunctions are the plane waves given by exp[j2π(α
λ
x+ β

λ
y)]. The coefficient function

A(fX , fY ) is computed by the forward Fourier transform of U(x, y) and is therefore

called the angular spectrum of the complex field U(x, y) [35].

Free-space propagation of an EM field acts as a dispersive, linear, and shift-

invariant spatial filter with a transfer function given by [35]

H(fX , fY ) =







exp
[

j2π z
λ

√

1− (λfX)2 − (λfY )2
]

,
√

f 2
X + f 2

Y <
1
λ

0 , else.
(15)

Therefore, a field propagated from z = 0 to some arbitrary z plane can be written in

terms of the angular spectrum of U(x, y; 0) as

U(x, y; z) = F−1 {A(fX , fY ; 0)H(fX, fY )} , (16)

where F−1{·} indicates the inverse Fourier transform operation. When the wave

vector k makes small angles with the optic axis, the radical term in Eq. (15) can be

approximated by the first two terms of a binomial expansion [35]. This leads to a

simpler form for the transfer function of free-space propagation

H(fX , fY ) = exp(jkz) exp
[

−jπλz
(

f 2
X + f 2

Y

)]

. (17)
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The assumption of small angles is called the paraxial approximation and is the same

assumption required to derive many expressions in geometric ray optics. The inverse

Fourier transform of Eq. (17) results in the free-space Fresnel diffraction kernel [72].

Therefore, free-space propagation that satisfies the paraxial approximation also sat-

isfies the Fresnel approximation, and the angular spectrum propagator is equivalent

to the Fresnel diffraction integral. This formulation allows analytical and numer-

ical computation of free-space propagation of complex fields representing EM field

quantities in transverse planes along the optic axis and provides the foundation of

simulations performed in this work. The angular spectrum propagator fully accounts

for diffraction under the previously stated assumptions and also provides the con-

ceptual foundation for accurately modeling continuous wave-optics phenomena with

discrete computer simulations [72].

2.1.5 Optical Elements and Aberrations. Defining a generalized pupil func-

tion is helpful for performing wave-optics analysis on systems with optical elements

and aberrations. Generalized pupil functions are very helpful in representing atmo-

spheric phase screens, lenses, lenslet arrays, and many other optical components and

effects encountered in adaptive optics systems. The generalized pupil function P(x, y)

is written as

P(x, y) = P (x, y)ejφ(x,y), (18)

where P (x, y) is a real-valued pupil function representing field amplitude attenuation

effects and φ(x, y) is the phase imparted by the optical element or aberration. The

pupil function often simply represents an aperture and is equal to 1 inside the pupil,

0 outside the pupil, and is set to 1/2 at the pupil boundary to mitigate aliasing

effects caused by the abrupt termination of the incident wavefront. Common pupil

functions are the circ function, which defines a circular aperture, and the rect function,

which is used to define rectangular apertures. For example, the pupil of a Shack-

Hartmann subaperture can be approximated by a rect function, which is given along
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one dimension with coordinate x by [35]

rect(x) =



















1, |x| < 1
2

1
2
, |x| = 1

2

0, otherwise.

(19)

A two-dimensional rectangle is formed simply by multiplying two one-dimensional

rect functions of orthogonal coordinates. Another useful pupil function is the super-

Gaussian apodization function, which generates a circular aperture with smooth edges

to further mitigate aliasing effects. A super-Gaussian pupil function is generated by

Psg(r) = exp
[

−
( r

w

)α]

, (20)

where r is a radial coordinate inside the pupil, w is the radius of the pupil, and α

is some power greater than 2 that effects the extent of apodization. Higher powers

cause a more abrupt transition from 1 to 0.

The phase function specifies how the optical element or aberration shapes the

propagating wavefront. The phase function for optical elements can be derived from

the refractive index of the element and the thickness function, which describes the

physical dimensions of the element [35]. One of the most useful phase functions is the

paraxial approximation for the phase of a spherical thin lens given by

φl = − k

2f
(x2 + y2), (21)

where k = 2π/λ is the scalar wave number, f is the focal length of the lens, and (x, y)

is the set of transverse coordinates in the plane of the thin lens [35].

Aberrations in an optical system or propagation path can also be represented by

the generalized pupil function. Aberrations are described by the aberration function

W (x, y), which gives the optical path difference (OPD) between the wavefront under

observation and a reference wavefront. OPD is either given in meters or waves (OPD
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in waves is computed by dividing OPD in meters by the wavelength λ). The phase

function φ(x, y) has units of radians and is computed from the aberration function by

φ(x, y) = 2πW (x, y), (22)

for W (x, y) given in waves of OPD. Aberration functions are often formed as the sum

of weighted basis functions. The Seidel aberrations are components of a set formed by

polynomial expansion of the aberration function about the aperture-averaged phase

(i.e. the piston). The first eight Seidel aberrations are named piston, tip, tilt, defocus,

astigmatism, coma, and spherical aberration [14]. Another particularly useful set of

basis functions that is orthogonal on the unit circle is the set of Zernike polynomi-

als [49].

Fourier decomposition provides another, excellent way of describing aberrations

on a square pupil. Aberrations induced by the atmosphere are often represented

by a Fourier series of spatial-frequency components. Relatively thick sections of the

atmosphere can be represented by a single phase function (or atmospheric phase

screen) as long as the optical properties of the atmosphere are approximately constant

throughout. To represent atmospheric paths with changing optical properties, the

path can be segmented into layers of approximately constant optical properties, and

a single phase screen can be used to simulate the optical effects of each layer. This

is called the layered model of atmospheric propagation. This approach was used

to generate the atmospherically distorted optical fields that provided the means of

testing the WFS’s discussed in this work.

2.1.6 Numerical Propagation and Sampling. Atmospherically degraded op-

tical fields result from propagation of light through a medium with an index of re-

fraction that varies spatially in a random fashion. While a few theories exist that

predict statistics for given atmospheric conditions, experimental evidence shows this

theory does not always sufficiently explain the behavior of such fields, and simulations

of atmospheric propagation are required to provide valid results [25, 82]. Simulating
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continuous physical quantities in the discrete computer environment requires careful

attention to sampling. Applying Fourier analysis in such simulations requires even

greater caution as quantities are transformed between spatial and spatial-frequency

domains, which opens the possibility for undesired results due to aliasing. A two-

dimensional, discrete signal gs(x, y) is obtained by sampling a continuous signal g(x, y)

through multiplication by comb functions. The comb function is defined as

comb(x) =

∞
∑

n=−∞
δ(x− n), (23)

where x is a spatial coordinate and δ denotes the Dirac delta function [35]. Using

comb functions, a discrete signal with sample spacings ∆x and ∆y can be written as

gs(x, y) = comb
( x

∆x

)

comb

(

y

∆y

)

g(x, y). (24)

Fourier transforming gs(x, y) results in the convolution of the comb functions with

the continuous function’s spectrum, which is expressed as

Gs(fX , fY ) =

∞
∑

n=−∞

∞
∑

m=−∞
G

(

fX − n

∆x
, fY − m

∆y

)

. (25)

This expression shows that Fourier transforming a discretely sampled continuous func-

tion produces an infinite number of spectra separated by a frequency spacing that

is inversely proportional to the spatial sampling interval. Therefore, if the spatial

function is not sampled finely enough, the replicas of the spectra overlap and cause

aliasing. According to the Whittaker-Shannon sampling theorem, a bandlimited con-

tinuous function can be perfectly reconstructed from the sampled function as long
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as

∆x ≤ 1

2Bx

and (26)

∆y ≤ 1

2By
,

where Bx and By are the finite bandwidths of the continuous function in the x and y

directions [35].

A further restriction imposed by discrete sampling is that the source must be

confined to a finite spatial extent, which causes rippling in the spectra [16]. The

ripples become larger as the spatial extent of the source becomes smaller, so numer-

ical wave-optics simulations require careful analysis of the trade-off between the size

of the simulation grid, the sample size in the source plane, the sample size in the

observation plane, and the number of samples across the simulation grid. These con-

straints can be relaxed by implementing multiple-partial-propagation techniques and

absorbing boundaries [72]. When multiple partial propagations are used, additional

partial propagations with shorter distances between them can decrease the grid size

requirements while still meeting the sample size requirements in the source and ob-

servation planes. Partial propagations provide the added benefit of implementing a

layered atmospheric turbulence model by allowing the application of generalized pupil

functions at partial propagation planes [72].

2.1.7 Validity of Wave Optics Simulations. Simulated complex EM fields

generated with wave-optics techniques require validation to ensure sampling con-

straints are adequately met. Simulations in this work generate optical test fields by

numerically propagating a point source through a layered model of atmospheric tur-

bulence using a multiple-partial-propagation implementation of the angular spectrum.

The sample spacing, grid size, propagation distances, and number of propagation steps

are carefully analyzed to meet the identified sampling constraints. The first step in
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validating the chosen simulation parameters is comparison of the simulation results

to the analytical results for Fresnel propagation. Propagation of a point source can

be modeled by using the Fresnel diffraction transfer function of Eq. (17) in Eq. (16)

and setting the field at z = 0 to a Kronecker delta, which has an infinite-bandwidth,

uniform-amplitude spectrum. Evaluating the inverse Fourier transform in Eq. (16)

leads to the analytical expression for an optical field due to propagation of a point

source from its location at z = 0 to an observation plane at some arbitrary z location,

which, in the paraxial approximation to a spherical wave, is given by

U(x, y) =
ejkz

jλz
exp

[

j
k

2z
(x2 + y2)

]

. (27)

Simulation of a true point source is impossible because of the infinite bandwidth. How-

ever, it is possible to numerically propagate a slightly extended source that matches

the analytical results for a point source very closely within some specified region of

interest. For a D ×D square region of interest located a distance z from the source

plane with transverse coordinates (ξ, η), a point source can be approximated as [72]

Ũps(ξ, η) = e−j k
2z

(ξ2+η2)

(

D

λz

)2

sinc

(

D

λz
ξ

)

sinc

(

D

λz
η

)

, (28)

where

sinc(x) ,
sin(πx)

πx
. (29)

Figures 2 (a) and (b) show the irradiance1 and phase resulting from analytical prop-

agation of a point source through vacuum. Figures 2 (c) and (d) show the irradiance

and phase resulting from numerical propagation of a simulated point source through

vacuum. The dashed, blue square in (c) and solid black square in (d) show the

observation-plane region of interest on the irradiance and phase, respectively, of the

1The terms irradiance [W/m2] and intensity [W/sr] are sometimes used interchangeably through-
out this document and should both be understood generally as the distribution of power over a
spatial extent; the distinction is simply a matter of units, which should be able to be inferred from
the context when units are important.
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Figure 2: Vacuum-propagated point source
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simulation results. In this region, the simulation results and analytical results match

very closely. The phase from the simulation shows the aliasing caused by finite sam-

pling, but this aliasing is kept from corrupting the region of interest because proper

sampling and partial-propagation distances were carefully chosen based on a thorough

sampling analysis.

2.2 Optical Coherence

The preceding development of wave-optics methods assumed monochromatic,

i.e. single-frequency, light. However, light from a physical source is never monochro-

matic but has rapidly changing amplitude and phase [14]. Even laser light oscillates

at different temporal frequencies ν, although it has a sufficiently narrow bandwidth

of frequencies ∆ν around some central frequency ν0 that it can be approximated as

monochromatic. Such light is called quasimonochromatic [34].

The amplitude and phase oscillations of light emitted from a single source at a

given moment in time t are generally correlated with those of light emitted at some

later time t + τ provided the time delay τ is small enough. Also, the oscillations of

light at a given point in space r in an optical disturbance propagated from a single

source are generally correlated with those of nearby points in the optical field. The

correlation between oscillations of light at two points separated in time or space is

called coherence.

Because the oscillations of EM waves in the infrared and visible regions of

the spectrum are far too fast to be tracked by any real detector, coherence is mea-

sured using interference phenomena. In fact, interference phenomena motivated the

wave theory of light, which is fundamental to the concept of coherence. Historically,

amplitude-splitting interferometers, such as the Michelson interferometer, have been

used to characterize the temporal coherence of light, whereas wavefront-splitting in-

terference, such as that imposed by Young’s double-slit experiment, has provided

insight into the spatial coherence of light [14, 34]. The details of these two experi-

ments are left to more rigorous texts on the subject, e.g. Refs. [14], [34], and [38].
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Here it is sufficient to summarize the analysis that develops a single expression that

fully characterizes both temporal and spatial coherence, namely the mutual coherence

function (MCF). The MCF is foundational to wavefront sensing for atmospherically

degraded optical fields. It is a function of the coherence time ∆tc, which is important

for interferometric wavefront sensing, and it also depends on coherence width, which

is specified for the atmosphere by Fried’s parameter r0.

Describing the MCF begins with consideration of two optical disturbances at

two different moments in time t and t+ τ and two different points in space r1 and r2,

represented by complex values U1(r1, t) and U2(r2, t+ τ). The MCF is the temporal

and spatial correlation between U1 and U2 given by

Γ(|r1 − r2|, τ) , 〈U1(r1, t)U
∗
2 (r2, t+ τ)〉T , (30)

where the angle brackets with subscript T represent a time average [14, 34, 38]. A

convenient shorthand notation for the MCF is Γ12(τ), which uses the subscript 12 to

indicate that the MCF is describing the coherence between optical disturbances at two

different points in space r1 and r2 [14,34,38]. The MCF, by definition, is a statistical

quantity, and the time average indicated in Eq. (30) requires that the statistics of U1

and U2 are ergodic. If this is not the case, then the time average must be replaced

with an ensemble average (see Ref. [34] Sec. 7.5). The complex degree of coherence is

a common measure of the correlation of optical disturbances at two points separated

by time τ and distance |r1 − r2| and is given by

γ12(τ) ,
Γ12(τ)

√

Γ11(0)Γ22(0)
. (31)

The definitions in Eqs. (30) and (31) imply the two different types of coherence men-

tioned previously. Temporal coherence is described by the degree of coherence |γ12(τ)|,
which is a function of the temporal separation τ of the optical disturbances. Spatial

coherence is described by the coherence factor |µ12|= |γ12(0)| between two points r1

and r2 at a single moment in time.
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For an optical disturbance at a single point in space, the degree of coherence

provides a means of specifying the coherence time as a measure of temporal coherence.

The coherence time is given by

∆tc =

∞
∫

−∞

|γ(τ)|2dτ. (32)

The degree of (self) coherence is related to the normalized power spectral density (PSD)

of light through the Wiener-Khinchin theorem [34]. Therefore, the coherence time can

be computed for light from a source with a known PSD, or spectral line, which pro-

vides a measure of power as a function of the average optical frequency ν and the

optical bandwidth ∆ν. For example, a source with a Gaussian PSD, such as light

from a low-pressure gas discharge lamp, has coherence time τc = 0.664/∆ν [34]. For a

source with a Lorentzian line, such as light from a high-pressure gas discharge lamp,

τc = 0.318/∆ν [34]. Because the coherence time is inversely proportional to the op-

tical bandwidth, it is often convenient to simply use a rectangular line for the PSD,

in which case τc = 1/∆ν. The coherence time grows infinitely large as the band-

width becomes small, so that monochromatic light has perfect temporal coherence

and temporally incoherent light contains many optical frequencies. Quasimonochro-

matic light, such as laser light, is effectively temporally coherent because it has a

small enough bandwidth to make the coherence time infinitely large for all practical

purposes.

Spatial coherence is exhibited to a high degree by light from a single point

source and is very important to imaging quality. It is also greatly affected by the

properties of the propagation medium. The spatial-coherence width defines the max-

imum distance separating two optical disturbances that can still be considered to be

mutually coherent. The coherence width is related to the isoplanatic patch size of an

imaging system or propagation medium. The size of the isoplanatic patch imposes a

limit on the size of an object for which the assumption of shift invariance for a given

transfer function applies [35]. This transfer function could be that of the propagating
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medium, e.g. the atmosphere, or that of an optical system [34, 35]. When τ = 0 and

r1 = r2, the MCF Γ11(0) is simply the irradiance of the optical field at time t and

point r1. When spatial coherence at a single instance in time is of primary concern,

the MCF simplifies to the mutual intensity function J12= Γ12(0), and the complex

coherence factor µ12, γ12(0) replaces the complex degree of coherence. In terms of

mutual intensity, the coherence factor is formally given by

|µ12| , |γ12(0)| =
|J12|

√

I(r1)I(r2)
, (33)

where I(r1) and I(r2) are the values of the irradiance at the points r1 and r2 [34].

When the coherence factor is identically equal to zero, the optical disturbances at r1

and r2 are said to be mutually incoherent [34] (p. 182). When |µ12| = 1, the distur-

bances are perfectly correlated and considered to be mutually coherent [34] (p. 183).

When 0 < |µ12| < 1, the disturbances are in a state of partial coherence, quantified

by their degree of coherence |γ12(τ)| [14, 34, 38].

Wave-optics methods can be applied to incoherent light by analyzing individual

frequencies independently and then summing the results according to the superpo-

sition principle [35, 92]. Also, incoherent imaging can be analyzed using frequency

analysis and the idea that an incoherent image is the result of convolving the geomet-

ric image of an object with the point spread function (PSF) of the imaging system or

the impulse response of the propagating medium [34, 35].

2.3 Photodetection Statistics

In the semi-classical approach to photo-detection, light is assumed to propagate

classically until hits a photodetector. The absorption of light energy by the photode-

tector material and subsequent transport and emission of an excited electron are then

described statistically. A photoevent is the release from the surface of the detector

material of an electron that was excited by a photon [34]. The number of photoevents

K in a defined area that occur during a specific time interval is referred to as the pho-
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tocount [34]. Photoevents obey Poisson statistics, so they have a probability function

given by

P (K) =

(

K̄
)K

K!
exp

(

−K̄
)

, (34)

where K̄ is the mean photocount and ! represents the factorial operation.

Because photoevents are fundamentally stochastic quantities, anytime light with

random fluctuations in the classical intensity is detected, the process is doubly stochas-

tic. Therefore, the statistical behavior of the interaction of light with matter is gov-

erned by the nature of the light involved. At one extreme, thermal light contains

many wavelengths and has a very short coherence time. At the other extreme, laser

light has a very small optical bandwidth and a very long coherence time. However,

significant amplitude fluctuations in laser light can cause it to behave more like ther-

mal light, in which case it is sometimes referred to as pseudothermal light [34]. The

mean and variance of detector photocounts K for thermal or pseudothermal light are

given by [34]

〈K〉 = ηq
hν̄

W; (35)

σ2
K =

ηq
hν̄

W +
( ηq
hν̄

)2

σ2
W , (36)

where ηq is the detector quantum efficiency, h = 6.626196× 10−34 [joules×seconds] is

Planck’s constant, ν̄ is the average optical frequency of the light, W is the irradiance

integrated over the detector area Ad (or, equivalently, the intensity integrated over the

detector solid angle) and integration time Td of the detector, and σ2
W is the variance

of the classical irradiance fluctuations.

The probability function for the photocounts of polarized thermal light follows

a negative binomial distribution, which can be expressed in terms of gamma distri-
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butions and the count degeneracy parameter δc as [34]

P (K) =
Γ
(

K + K̄
δc

)

K!Γ
(

K̄
δc

)

[

(1 + δc)
K̄/δc

(

1 +
1

δc

)K
]−1

. (37)

When the degeneracy parameter approaches zero, this function simplifies to the Pois-

son distribution [34]. Also, for polarized thermal light, the photocount variance can

be written in terms of the degeneracy parameter as

σ2
K = 〈K〉 (1 + δc) . (38)

The degeneracy parameter accounts for classical fluctuations in the irradiance and is

defined as

δc =
K̄

M , (39)

where M is a parameter that describes the number of degrees of freedom of the irra-

diance within a single coherence time and coherence area. For cross-spectrally pure

light, M can be expressed as the product of the temporal degrees of freedom Mt and

the spatial degrees of freedom Ms [34]. For integration times much shorter than the

coherence time, the temporal degrees of freedom parameter decreases with an increas-

ing degree of coherence but can never be less than one [34]. For integration times much

longer than the coherence time, the number of temporal degrees of freedom is equal to

the number of coherence intervals contained in the integration time [34]. The spatial

degrees of freedom parameter behaves similarly relative to the coherence area [34].

Equation (39) shows that as M becomes large relative to the number of photocounts,

i.e the number of photoevents occurring in a given detector area during a given time

interval, δc approaches zero, and photocount statistics are well approximated by the

Poisson distribution. Intensity fluctuations can be assumed to be minimal during

the integration time either for point-source beacons with very long coherence times

or for pseudothermal beacons with short coherence times relative to the integration

time [34]. In the second case, for atmospheric wavefront-sensing applications, the
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coherence time of pseudothermal beacons must be long enough to avoid classical in-

tensity fluctuations but short enough to allow the integration of intensity to occur

faster than the temporal evolution of atmospheric phase disturbances [87]. Similarly,

detector areas should be large enough that classical intensity fluctuations are aver-

aged out over their area while being small enough to adequately sample atmospheric

wavefront distortions.

2.4 Atmospheric Turbulence

A layered theory of atmospheric turbulence can be combined with free-space

wave-optics simulations to model the propagation of light through a turbulent at-

mosphere, which is critical in analyzing the effectiveness of hybrid wavefront sensing

techniques explored in this work. The impact of atmospheric turbulence on optical

fields is characterized by the MCF (see Sec. 2.2), which is closely related to the wave

structure function Dψ(r) that inherits its qualities from the refractive-index structure

of the atmosphere. Stochastic solutions of Maxwell’s equations provide estimates

for these important statistical measures of turbulence-degraded optical fields. Addi-

tionally, three statistical atmospheric parameters are useful in characterizing optical

effects of atmospheric turbulence. These are the atmospheric coherence width r0,

the log-amplitude variance σ2
χ, and the isoplanatic angle θ0. This section provides a

high-level overview of the statistical concepts used to define these quantities, which

describe the optical impact of atmospheric turbulence.

2.4.1 The Optical Structure of the Atmosphere. The refractive index of

air is very nearly unity, and if the atmosphere was completely still and had the

same refractive index everywhere, propagation through it could be treated as free-

space propagation. However, air in the Earth’s atmosphere is never perfectly still but

behaves as a viscous fluid with both laminar and turbulent flow [9]. Also, variation

of air density with altitude causes the refractive index to also vary with altitude.

Furthermore, temperature fluctuations and turbulent mixing induce random behavior
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in the atmosphere’s index of refraction [1]. Because the refractive-index fluctuations

are small (much less than one), the index of refraction of the atmosphere can be

expressed as a function of a point in space r and moment in time t as

n(r, t) = n0 + n1(r, t), (40)

where n0 = 〈n(r, t)〉 ∼= 1 is the mean value of n(r, t) and n1(r, t) represents the ran-

dom fluctuations of n(r, t) about its mean value [1]. Taylor’s frozen flow hypothesis

assumes light propagates through turbulence much faster than the flow of the turbu-

lence, so changes in atmospheric quantities at an observation point are only caused

by the atmosphere moving across that point rather than from local changes in the

quantities. Therefore, temporally evolving atmospheric turbulence can be modeled

by translating an atmospheric phase screen across the field of view [1]. Under the as-

sumptions of quasimonochromatic light and Taylor’s frozen flow hypothesis, the time

dependence in Eq. (40) is dropped and n0 becomes a function of position alone.

Refractive-index fluctuations in the atmosphere occur over a varying range of

scale sizes measured in units of meters. Wind shear and convection cause large-scale

refractive-index fluctuations with a lower bound given by the outer scale L0; typically

L0 & 10m [1]. The region below the smallest scale size is referred to as the dissipation

range and has an upper bound defined by the inner scale l0. In the dissipation range,

turbulence dissipates and air flow becomes laminar. The range of scale sizes between

the inner and outer scales is referred to as the inertial subrange because inertial

forces dominate. These forces cause the air flow to become turbulent, which sets up

a random spatial distribution of regions of varying sizes, each with different values of

refractive index [1]. Regions over which the refractive index remains approximately

constant are called eddies and range in size from several millimeters to several meters

in diameter [1].

Far from flow boundaries or heat sources, the random distribution of eddies

well inside the inertial subrange (l0 ≪ l ≪ L0) is assumed to be statistically isotropic
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and locally homogeneous [1,71]. This type of behavior characterizes a turbulent atmo-

sphere, and the remaining theory in this section only applies where statistical isotropy

and local homogeneity can safely be assumed. Because statistical homogeneity is only

locally assumed, covariance functions are replaced by structure functions, which are

the mean-square value of the difference of a quantity at two points [71]. The structure

function for the index of refraction is defined as

Dn(r1, r2) =
〈

[n(r1)− n(r2)]
2
〉

, (41)

where r1 = (x1, y1, z1) and r2 = (x2, y2, z2) are coordinate vectors for two different

locations, and angle brackets indicate an ensemble average. The assumption of lo-

cal homogeneity allows the refractive-index structure function to be expressed as a

function of the vector distance r1 − r2, and the assumption of isotropic turbulence

further simplifies the structure function so that it depends only on the scalar dis-

tance r = |r1 − r2| [9]. Therefore, the structure function of the refractive index of a

homogeneous and isotropic atmosphere is often symbolized by Dn(r).

The strength of turbulence is characterized by structure constants for various

atmospheric parameters of interest. Kolmogorov applied dimensional analysis based

on a set of hypotheses grounded in physical intuition to develop an expression for the

longitudinal structure function of wind velocity in a turbulent atmosphere based on

the velocity structure constant C2
v [9]. Corrsin and Obhukov extended Kolmogorov’s

theory of structure functions to conservative passive scalars, which enabled develop-

ment of the potential temperature structure function Dθ(r) in terms of the poten-

tial temperature structure constant C2
θ . Optical turbulence is characterized by the

refractive-index structure constant C2
n, which is a function of the potential temper-

ature and specific humidity [9]. The refractive-index structure function is defined in

the inertial subrange as

Dn(r) = C2
nr

2/3 , l0 ≪ r ≪ L0 . (42)
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This expression for the refractive-index structure function is identical to that for po-

tential temperature expressed as a function of C2
θ , which is based on the assumption

that refractive-index fluctuations are caused almost exclusively by temperature vari-

ations, allowing pressure and humidity variations to be neglected [1]. Since both of

these structure functions follow the same two-thirds power law Kolmogorov developed

for the velocity structure function, optical turbulence in the inertial subrange is often

referred to as Kolmogorov turbulence.

The optical turbulence spectrum Φn(κ) describes the refractive-index fluctua-

tions as a function of angular spatial frequency2 κ and comes from applying a three-

dimensional Fourier transform to the covariance function of the refractive-index fluc-

tuations Bn(r). When atmospheric turbulence is isotropic and locally homogeneous,

Φn(κ) can be related to the refractive-index structure function. For Kolmogorov tur-

bulence this results in an optical-turbulence power spectrum given by [9]

Φn(κ) = 0.033C2
nκ

−11/3 , 1
L0

≪ κ≪ 1
l0
. (43)

Although other expressions for the power spectrum of atmospheric turbulence have

been derived for use when the effect of inner and outer scale cannot be neglected,

inside the inertial subrange they reduce to the Kolmogorov spectrum [1]. Because

of its simple form and the wide applicability of the assumption that turbulence is

restricted to the inertial subrange, the Kolmogorov spectrum is sufficient for analysis

in this work.

As a final note on the optical structure of the atmosphere, refractive-index

structure constant profiles C2
n(h) have been generated by measuring the temperature

difference between two points separated by a known distance over a range of altitudes

h in a variety of locations, times of day, and weather conditions [1]. C2
n is generally a

strong function of altitude but is constant for horizontal propagation paths that are

2This is the spatial analog to angular frequency ω, i.e. κ = 2πρ in radians per meter, where
ρ = (fX , fY , fZ) is a three-dimensional spatial-frequency coordinate vector with units of cycles per
meter [9].
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short relative to the radius of the earth. This work generally assumes a constant C2
n

profile since it simplifies equations and does not detract from wavefront sensor design

requirements.

2.4.2 Optical Turbulence Statistics. Monochromatic light propagating through

a material medium with spatially distributed random fluctuations of the index of

refraction n(r) can be described by the stochastic Helmoltz equation (a result of

Maxwell’s equations) as
[

∇2 + k2n2(r)
]

U(r) = 0. (44)

When localized pockets, or eddies, of relatively constant refractive index are defined

as the diffracting structures, the first two assumptions of Sec. 2.1 remain valid for

optical and infrared wavelengths in the inertial subrange of the atmosphere since the

wavelengths are much smaller than the inner scale of the turbulence [1]. The last as-

sumption of Sec. 2.1 also remains valid since transparent media are non-magnetic [14].

The assumption of linearity applies in nearly all cases of propagation through air ex-

cept for high-power laser beam propagation [93]. Also, although the atmosphere is a

dispersive medium, the scale of atmospheric dispersion allows it to be neglected when

considering diffractive effects under the assumption of quasimonochromatic light [71].

Furthermore, atmospheric effects on polarization are negligible, so the assumption of

material isotropy remains valid [1, 80]. However, the assumption of homogeneity no

longer applies since the index of refraction is now considered to be a random field.

This requires a stochastic approach to solving Eq. (44) that accounts for the random

refractive-index fluctuations n1(r).

One method of solving the stochastic Helmholtz equation is through the classical

Rytov method, which assumes a solution of the form

U(r, L) = U0(r, L) exp[ψ(r, L)] (45)

= U0(r, L) exp[ψ1(r, L) + ψ2(r, L) + ... ],
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where U0(r, L) is the two-dimensional field with transverse vector spatial coordinate

r = (x, y) and is due to free-space propagation of an optical wave a distance L along

the z-axis. The argument ψ(r, L) is the total complex perturbation of the field due

to random inhomogeneities along the propagation path [1]. To make the solution

tractable, complex perturbations are represented as the sum of successively smaller

perturbations [71]. The first- and second-order perturbations ψ1 and ψ2 are shown

in Eq. (45). The perturbation ψ is a complex random variable and can be written

as ψ = χ + jS. Substituting this expression for ψ into Eq. (45) expresses the optical

field as

U(r, L) = U0(r, L) exp [χ(r, L) + jS(r, L)]

= U0(r, L) exp [χ(r, L)] exp [jS(r, L)] , (46)

which illustrates why χ is referred to as the log-amplitude fluctuations of the optical

field and S represents the phase perturbations. The statistics of χ and S are deter-

mined from the statistics of the refractive-index fluctuations n1, which are randomly

distributed with zero mean [9]. Furthermore, χ and S are formed from the sum of

a large number of fluctuations of n along the propagation path [9]. Therefore, by

the central-limit theorem, χ and S are zero-mean Gaussian random variables, which

makes ψ also a Gaussian (normally-distributed) random variable.

Since ψ is a normally-distributed random function of the refractive-index fluctu-

ations, the first-, second-, and fourth-order moments of the random field U(r, L) can

be expressed exactly in terms of ψ1 and ψ2 and the atmospheric turbulence spectrum

Φn(κ, z) [1]. The first moment of the field is its mean value 〈U(r, L)〉, and the second

moment is the MCF Γ12(L) [1].
3 The coherence factor |µ12| is a normalized form of

the MCF that provides a measure of the spatial coherence of an optical field (see

3The MCF discussed in this section is equivalent to the MCF Γ12(τ) discussed in Sec. 2.2 with the
additional restriction that the two points of observation are in the same transverse plane at z = L

and at the same point in time, i.e. τ = 0. The notation used here borrows that of Andrews and
Phillips to explicitly show the MCF as a function of propagation distance L and indicate that the
observation points are in the same transverse plane [1].
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Sec. 2.2). When |µ12| = 1, the values of the field at the two points r1 and r2 are

perfectly coherent, and when |µ12| = 0 they are perfectly incoherent.

In an isotropic and homogeneous random field, the coherence factor µ12 is a

function only of the distance r = |r1 − r2|. For optical fields atmospherically prop-

agated a distance L, the coherence factor is related to the wave structure function

Dψ(r, L) by [1]

|µ(r, L)| = exp

[

−1

2
Dψ(r, L)

]

. (47)

The distance r associated with the 1/e value of the coherence factor is called the

spatial coherence radius ρ0 [1]. The Rytov approximation leads to expressions for

the MCF in terms of the wave structure function, which can be computed from the

turbulence spectrum Φn(κ) to provide a measure of ρ0.

Fried’s parameter r0 provides a more intuitively useful measure of coherence

than ρ0, since it is based on the impact of atmospheric turbulence on imaging qual-

ity. Incoherent imaging data from the 1960’s showed a limit to achievable resolution

from increasing the aperture diameter of a telescope in the presence of atmospheric

turbulence. Fried defined resolution as the integral over the two-dimensional spatial-

frequency domain of the modulation transfer function (MTF) of an imaging system,

which he expressed in terms of the wave structure function of atmospherically prop-

agated EM waves [27]. His expression showed an absolute limit to the resolution of

an imaging system in the presence of atmospheric distortions, which is the resolution

achievable by an otherwise-diffraction-limited imaging system with aperture diame-

ter equal to r0 [27]. Fried’s parameter r0 is associated with the average coherence

width of the eddies of atmospheric turbulence, which is why it is also referred to as

the atmospheric coherence width. The wave structure function can be expressed as a

function of r0 and is given for the case of Kolmogorov turbulence by [27]

Dψ(r) = 6.88

(

r

r0

)5/3

. (48)
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This leads to the expression for r0 computed from integrating C2
n over the propagation

path, i.e. [71]

r0 =



0.423k2
L
∫

0

C2
n(z)γ

5/3dz





−3/5

, (49)

where γ is a propagation parameter that depends on the form of the wavefront with

γ = 1 for a plane wave, and

γ =
|R0 − z|
|R0 − L|

for a spherical wave with radius of curvature R0 6= L [71]. The atmospheric coherence

width and spatial coherence radius are related to each other by r0 = 2.1ρ0 [1]. The

expression for r0 in Eq. (49) applies for a plane wave or spherical wave propagating

from z = 0 to z = L as well as for a plane wave or spherical wave propagating from

z = L to z = 0.

Another parameter that characterizes atmospheric turbulence in terms of imag-

ing system performance is the isoplanatic angle θ0, which is computed from C2
n by [71]

θ0 =



2.91k2
L
∫

0

C2
n(z)z

5/3dz





−3/5

. (50)

The isoplanatic angle is useful when considering extended sources because it gives the

resolution limit caused by atmospheric turbulence in terms of the field of view of the

imaging system.

The fourth-order moment of the random field U(r, L) is the cross-coherence

function Γ1234(L) and can be used to develop expressions for the normalized irradiance

variance, also called the scintillation index, σ̃2
I [1]. The scintillation index characterizes

the irradiance fluctuations caused by atmospheric turbulence and is computed by

σ̃2
I =

σ2
I

〈I〉2
, (51)
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where σ2
I is the variance of the intensity, and 〈I〉 is the mean intensity. For Gaus-

sian fields, the scintillation index can be decomposed into on-axis and radial compo-

nents [1]. However, this work is primarily concerned with spherical and plane waves,

which are limiting cases of Gaussian fields for which the radial component of the

scintillation index disappears [1]. The theoretical expression for the log-amplitude

variance σ2
χ is called the Rytov number, which for either a spherical or plane wave

propagating through weak Kolmogorov turbulence along the z-axis from z = 0 to

z = L is given by [71]

σ2
χ = 0.5631k7/6

L
∫

0

C2
n(z)(L− z)5/6γ5/6dz. (52)

Propagation from z = L to z = 0, simply requires substitution for (L− z) with z in

Eq. (52) to get [71]

σ2
χ = 0.5631k7/6

L
∫

0

C2
n(z)(γz)

5/6dz. (53)

In weak scintillation (σ2
χ ≤ 0.25), the log-amplitude variance is approximately four

times the log-intensity variance σ2
ln I , which is sometimes also referred to as the Rytov

variance [71].

2.5 The Shack-Hartmann Wavefront Sensor

The Shack-Hartmann WFS has been in use for a long time, and the AO com-

munity has learned and written much about its capabilities and limitations. It is

based on the well-documented and proven Hartmann test. The Hartmann test, in-

vented by J. Hartmann in 1900, uses a screen with holes in it placed in a converging

beam near focus to determine surface irregularities of an optical element under test by

measuring the displacement of the resulting focused spots from those measured for a

reference surface [45]. In 1971 B. C. Platt and R. V. Shack proposed using a lenticular

screen made with two identical layers of cylindrical lenses placed at the pupil plane

instead of a screen with holes [74]. Such an arrangement is most often referred to as a
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Shack-Hartmann WFS. Modern Shack-Hartmann sensors use a lenslet array formed

from a solid piece of optical material instead of a lenticular screen [45]. The lenslet

array effectively segments the incident wavefront and focuses the resulting samples at

a common image plane where transverse spot displacements are measured and used

to estimate the wavefront gradient inside the pupil. In many cases the wavefront can

be very accurately estimated simply by integrating these gradient measurements [45].

Often the integration is performed using least-squares reconstruction of the gradients

into phase estimates.

2.5.1 Theory. A simple tilt sensor consists of a lens and a detector array.

The displacement of a focused spot from the center of the detector array can provide

an estimate for the tilt of a wave incident on the focusing lens. Figure 3 shows

a diagram of such a tilt sensor. A plane wave incident on a positive thin lens with

diameter d is focused onto a detector at the focal plane located a distance f behind the

lens. This plane wave can be represented as a bundle of parallel rays brought to focus

by the lens at a point at the center of the focal plane. The rays and the corresponding

perpendicular wavefront are shown in Fig. 3 as dashed lines for a normally incident

wavefront. A plane wave tilted from normal by an angle θT measured above the optic

axis is focused at the detector a transverse distance T below the on-axis spot of the

normally incident plane wave or reference wave. The rays and wavefront of the tilted

plane wave are shown as solid lines in Fig. 3.

The distance W along a line parallel to the optic axis between a point on the

reference wave and a point on the tilted wave represents the OPD between the two

points on the respective wavefronts. The slope of the incoming plane wave is defined

as the change in OPD with respect to the change in the transverse coordinate y.

Assuming small changes in W with respect to changes in y, this simple development

from geometric optics relates the transverse displacement of the spot in the focal plane
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Figure 3: Tilt sensor
A lens with diameter d and a detector located one focal length f after the lens measure
the spot displacement T , from which the tilt angle θ and the wavefront slope dW/dy
can be computed.

to the slope dW/dy of the incoming plane by

θT =
dW

dy
= −T

fℓ
, (54)

which gives the tilt angle of the incident wavefront in units of radians. Another view

of this effect comes from Fourier optics. A lens is a physical implementation of a

Fourier transform, and accordingly, a pure tilt in the lens plane results in a shift in

the focal plane [35]. Therefore, a tilted plane wave incident on a lens results in a spot

displacement T = fs, where s = dW/dy is the slope of the wavefront and f is the

focal length of the lens [7].

A SH sensor combines a monolithic lenslet array with a detector array to form

an array of tightly packed tilt sensors. Each lenslet forms a subaperture that samples

a small portion of the incident wavefront. The subapertures of a SH WFS are square

with side length d. If the subapertures are small enough, each subaperture wavefront
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sample is well approximated by a tilted plane wave. The arrays of tilts in the x and y

directions are therefore a measure of the two-dimensional wavefront gradient averaged

over the subapertures and can be reconstructed into phase estimates for the incident

wavefront.

2.5.2 Measuring Spot Displacement. Several methods are used to measure

the displacement of the focal spot of each subaperture from the on-axis position.

Two of these methods, the quad-cell detector and the centroid detector are discussed

here. The quad-cell detector is divided into quadrants as shown in Fig. 4. Each

quadrant is a stand-alone detector that outputs a signal proportional to the incident

irradiance. The horizontal and vertical displacements Tx and Ty are proportional to

the normalized quad-cell signals qx and qy,

qx =
(B +D)− (A+ C)

A+B + C +D

qy =
(A+B)− (C +D)

A+B + C +D
, (55)

where A,B,C, and D are signals proportional to the irradiances incident in the detec-

tor quadrants as labeled in Fig. 4. The quad-cell signals are converted into transverse

displacements using a calibration factor, which is empirically determined by plotting

measured quad-cell signals as a function of known displacements of a test spot.

Another method for determining transverse spot displacement uses a focal plane

array with many pixels (more than four) to compute the centroid of the incident irra-

diance, which reduces to the quad-cell calculation for a four-pixel detector array. The

horizontal and vertical spot displacements are computed from the centroid definition
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Figure 4: Quad-cell detector

as

Tx =

∫∫

xI(xfp, yfp)dxfpdyfp
∫∫

I(xfp, yfp)dxfpdyfp
(56)

Ty =

∫∫

yI(xfp, yfp)dxfpdyfp
∫∫

I(xfp, yfp)dxfpdyfp
,

where I(xfp, yfp) is the irradiance distribution over the focal plane with coordinates

(xfp, yfp) and the integration is performed over the extent of the detector region sub-

tended by the subaperture.

The wavefront gradient, or slope, obtained from the centroid calculation is actu-

ally weighted by the irradiance of the wavefront in the pupil of the Shack-Hartmann

sensor. Therefore, another expression often used for Shack-Hartmann slope measure-

ments is the subaperture-averaged intensity-weighted gradient, which is given for the

x-gradient of the wavefront incident on the (m,n)th subaperture by

sxm,n =

∫∫

Ip(xp, yp)
∂
∂xp

W (xp, yp)dxpdyp
∫∫

Ip(xp, yp)
, (57)
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where W (xp, yp) is the OPD of the wavefront across the pupil, Ip(xp, yp) is the irradi-

ance in the pupil, (xp, yp) are the horizontal and vertical pupil coordinates of a given

lenslet, and the limits are performed over the extent of the lenslet [62]. Equation (57)

is useful for performing fast simulations of Shack-Hartmann slope measurements that

include effects of irradiance fluctuations.

There may be better ways of computing subaperture spot displacement than

from the centroid algorithm. Some possible methods are maximum-likelihood esti-

mation, Fourier analysis, and periodic correlation [8, 17, 26, 57, 58]. Each of these

approaches is discussed in more detail in the literature review in Ch. III. However,

since the purpose of this work was to find a way to combine the SH WFS with an SRI

in a hybrid WFS, the centroid method was chosen as a reasonable first metric for per-

formance. Future work can evaluate the impact of other slope-estimation techniques

on hybrd-WFS performance since, presumably, any improvements to slope estimation

over the centroid method should only improve hybrid-WFS performance.

2.5.3 Dynamic Range. The geometry of the Shack-Hartmann sensor allows

diffracted light (side lobes) from adjacent subaperture spots to overlap on the detector

array. One way of dealing with this is to place guard bands of dead pixels between

subaperture detector regions. However, due to the spread of energy over a potentially

large area caused by diffraction, it is still possible for subaperture tilt measurements to

be influenced by light from adjacent subapertures. This can cause measurement error

and limit the dynamic range of the Shack-Hartmann sensor. The centroid algorithm

estimates the displacement of the focused spot from the center of the detector array

based on the imbalance of energy incident on the detector. Assuming photon-limited

noise, the error of slope measurements is primarily impacted by

1. the size of the incident spot relative to the size of the detector array,

2. the spot displacement relative to the size of the detector array, and

3. the size of the spot relative to the size of the pixels in the detector array.
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Winick addressed the last item by computing the Cramer-Rao lower bound (CRLB)

for slope measurements, which showed that minimum slope estimation error is achieved

for one-dimensional slope estimates when the ratio of pixel size to spot size (charac-

terized by diffraction angle λ/d) is between 1 and 2 [91]. This range ensures the

spot is small enough to achieve enough sub-pixel resolution to determine the spot

location unambiguously while also accounting for error due to noisy pixel outputs.

However, Winick’s analysis assumed an infinitely large detector array, which neglects

the first two dependencies listed above. He also assumed a Gaussian spot instead of a

diffraction-limited spot pattern derived from the size and shape of the subapertures.

Irwan and Lane show the limitations of assuming a Gaussian spot distribution in a

tilt sensor. When a diffraction-limited spot for a circular or square aperture is used

and only Poisson noise is assumed, the variance of tilt measurements derived from

centroid measurements increases with detector-array size [41]. The natural solution

to this problem is the truncation of the detector array, but this injects error that

is both a function of detector size and spot displacement due to the truncation of

the spot as it moves away from the center of the detector array [41]. The impact of

centroid displacement and detector-array size are closely related to one another since

a larger detector allows larger spot displacement without significant spot truncation.

The tilt variance due to truncation error is very large at small sizes of the detector

array. Therefore, the detector array must not be too small or truncation error will

dominate, but it must also not be too large or photon noise becomes excessive. In

wavefront sensing for atmospheric AO, prior knowledge of the atmospheric coherence

width r0 provides useful information of the expected amount of atmospheric beam

spread, which is useful for choosing appropriately-sized Shack-Hartmann lenslets.

Even in the absence of noise and assuming a Gaussian spot, the centroid error

depends on detector-array size and spot displacement. A Gaussian irradiance dis-

tribution with spot size σ and spot displacement (in the x-direction) Tx is given by

I(x, y) = exp

[−(x− Tx)
2

2σ2

]

. (58)

41



Substituting this expression into Eq. (56) and evaluating the integrals over a finite

detector array with side length L leads to a specific expression for the centroid calcu-

lation

Cx =

2σ√
2π

(

e−u
2 − e−v

2

)

+ Tx [erf(u) + erf(v)]

erf(u) + erf(v)
. (59)

The arguments u and v are functions of the detector-array side length L, the spot

size σ, and the spot displacement Tx and are given by

u =

√

2(L+ 2Tx)

4σ
, (60)

v =

√

2(L− 2Tx)

4σ
.

The error function erf(ξ) is the result of integrating a Gaussian function and is defined

as

erf(ξ) ,
2√
π

∫ ξ

0

e−t
2

dt.

Evaluating Eq. (59) numerically over a range of spot displacements and spot

sizes relative to the size of the detector array illustrates the dependence of centroid

error on these sensor specifications. Figure 5 shows the resulting error for a detector

array with the spot size σ set to a fixed multiple of the pixel size δpix. The metric

plotted in Fig. 5 is normalized centroid error ǫC , which was was computed by

ǫC =
Tx − Cx
Tx

. (61)

White regions in Fig. 5 correspond to low error, dark regions correspond to high error,

and contour lines show the 1%, 4%, 8%, and 12% error levels. This illustrates the

effect of a finite detector array on the dynamic range of the centroid algorithm, since

the dynamic range should be limited to the region where the centroid error is tolerably

low. The error is less than one percent over a fairly large range of detector-array sizes

and spot displacements but increases rapidly for values outside this range. The error

calculation did not apply the absolute value function, so Fig. 5 also illustrates that
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Figure 5: Truncation error of centroid.

the centroid calculation is always less than the actual spot displacement, i.e it is

biased towards the center of the subaperture. Furthermore, the figure illustrates that

centroid error is a nonlinear function of both L/σ and Tx/L. Because of this limitation

on dynamic range, even in the absence of noise, spot-displacement sensors based on

the centroid calculation require calibration for a given lens and detector array.

2.5.4 Noise-Induced Centroid Error. A model for centroid error due to

photon noise and scintillation is presented in Ch. IV. While this model could be

adapted to account for truncation error in a Monte Carlo study, it is primarily intended

for evaluating the impact of noise on centroid error. However, previously published

work in this area provides guidelines for choosing pixel size and detector-array size,

which can then be evaluated for noise-induced error using the model presented in

Ch. IV. In the present work, SH subapertures lengths were chosen to be less than or

equal to r0, and the lenslet focal lengths and detector arrays were designed to achieve
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two pixels across a diffraction angle and eight pixels across a subaperture. These

design parameters were chosen based on the guidelines presented in [41] and [91] and

appeared to maintain a good balance between the competing requirements of dynamic

range (a.k.a. truncation error) and photon-noise-induced error.

2.5.5 Impact of Irradiance Fluctuations. Reflection of a coherent wave

from objects with random surface roughness or accumulation of phase disturbances

over long propagation distances through strong turbulence causes random fluctua-

tions in the amplitude of the propagating optical field. These amplitude fluctuations

result in a random distribution of bright and dark regions in the detected irradi-

ance patterns. Irradiance fluctuations due to random surface roughness are generally

called speckle, while those due to atmospheric propagation are referred to as scintil-

lation. Irradiance fluctuations can degrade wavefront estimates. This is especially

true for least-squares-reconstructed wavefronts from slope measurements. Because

the slopes are equivalent to the subaperture-averaged intensity-weighted phase gradi-

ents [Eq. (57)], their error is inversely proportional to the irradiance. If a subaperture

of a Shack-Hartmann sensor samples a region of the field with a small amplitude, the

spot irradiance can fall below the noise level and cause a zero-slope measurement even

when the phase gradient over that region of the field is non-zero. This issue motivates

improvements in the SNR of Shack-Hartmann sensors designed to operate in strong

atmospheric turbulence. However, SNR often competes with the requirement that

the subapertures are small enough to partition the incident wavefront into samples

that are well-approximated by plane waves. Also, even in the complete absence of

noise, the complex field of the incident wavefront could be identically zero in a re-

gion of non-zero phase gradient, which would result in least-squares-reconstruction

errors for a Shack-Hartmann sensor. Much of the interest in exploring alternatives

to the Shack-Hartmann WFS for AO is motivated by simulation studies that have

shown the rapid degradation of SH-WFS performance with increasing scintillation

strength, especially when the wavefront is insufficiently sampled [3]. This may be an
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area where combining the Shack-Hartmann sensor with a second sensor such as the

SRI may prove helpful. Toward this end, the shot-noise-induced centroid-error model

presented in Ch. IV was developed that accounts for the effect of random fluctuations

of the classical irradiance.

2.6 The Self-Referencing Interferometer

The self-referencing interferometer exploits recent advances in fiber optics and

camera technology to implement a phase-shifting point-diffraction interferometer (PDI),

which can estimate the phase of the incident wavefront from the recorded irradiance

patterns (i.e. interferograms) of two interfered optical fields. This section summarizes

interferometric theory, presents one method of implementing phase-shifting interfer-

ometry, and describes the concept and operation of the SRI as a wavefront sensor.

2.6.1 Theory of Interference. The spatially distributed irradiance I(r) of

a single polarization component of an EM wave is represented by a time- and space-

varying complex electric field E(r, t) averaged over some finite period of time, i.e.

I(r) =
〈

|E(r, t)|2
〉

T
, (62)

where r is a spatial coordinate vector and 〈g〉T indicates the time average of g over

the time interval T . The temporal and spatial variations of two EM waves with the

same angular frequency ω can be written as [14]

E1(r, t) = ℜ
{

U1(r)e
−jωt
}

E2(r, t) = ℜ
{

U2(r)e
−jωt
}

, (63)

where t is a temporal coordinate, and ℜ{u} is an operator that returns the real part

of the complex number u. The spatially-dependent complex-field amplitudes U1(r)
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and U2(r) are defined as

U1(r) = |U1(r)|ejφ1(r)

U2(r) = |U2(r)|ejφ2(r), (64)

where φi(r) is the spatially-varying phase of the time-independent complex field Ui(r)

with phasor amplitude given by |Ui(r)|; i ∈ {1, 2}. Interference of parallel polarization
components of two electric fields E1 and E2 is represented as the sum of the two fields

E = E1 + E2, (65)

where the explicit dependence on r and t has been temporarily dropped to simplify

the notation in the next step. Using Eq. (62) on the two summed fields yields an

expression for the irradiance due to the interference of two fields

I =
〈

|E1 + E2|2
〉

T

= 〈E1E
∗
1〉T + 〈E2E

∗
2〉T + 2 〈E1E

∗
2〉T

= I1 + I2 + 2I1,2. (66)

The superscript asterisk ∗ in Eq. (66) indicates complex conjugation, the terms I1

and I2 are the irradiances due to each individual field acting alone, and I1,2 is a cross

term that gives information about the relationship between the two fields. For two

time-averaged fields interfering in a plane perpendicular to the z-axis, the irradiance

cross term can be expressed as

I1,2(x, y) = |U1(x, y)||U2(x, y)|ℜ
{

ej[φ1(x,y)−φ2(x,y)]
}

. (67)
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Defining ∆φ(x, y) = φ1(x, y) − φ2(x, y) and applying Euler’s identity to extract the

real part of the complex exponential term, the cross term becomes

I1,2(x, y) =
√

I1(x, y)I2(x, y) cos[∆φ(x, y)], (68)

where the individual scalar-field amplitudes have been expressed as the square root

of their irradiance values. In the special case where I1(x, y) = I2(x, y), using the

definition for I1,2(r) from Eq. (68) in Eq. (66) leads to the following expression for

the interferogram irradiance [14]:

I(x, y) = 2I1(x, y) {1 + cos[∆φ(x, y)]} . (69)

Although the preceding was based on the assumption of parallel polarization be-

tween the interfering fields, these expressions also apply to randomly-polarized waves

and elliptically-polarized waves [14]. However, Fresnel and Arago showed that waves

with orthogonal linear polarization do not interfere, so Eq. (69) does not apply in

that case [14]. Regardless, Eq. (69) shows that it is possible to examine the irradi-

ance pattern caused by two coherent EM fields interfered with one another to estimate

the spatially-distributed phase differences between them. Interferometry generally in-

volves adding a field with a known wavefront, usually called the reference, to a field

with an unknown wavefront and then using the resulting interferograms to estimate

the phase of the unknown wavefront.

2.6.2 Fringe Visibility and Coherence. Fringe visibility V is the depth of the

variations in irradiance across an interferogram and was first defined by Michelson as

V =
Imax − Imin
Imax + Imin

, (70)

where Imax and Imin are the maximum and minimum values of irradiance in the inter-

ferogram [38]. A very useful expression for fringe visibility defines it as a function of
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the individual irradiances I1 and I2 of the interfered fields and the degree of coherence

|γ12(τ)| and is given by

V =
2
√
I1I2

I1 + I2
|γ12(τ)|. (71)

According to Eq. (71), V = 0 for the incoherent case and increases with the degree of

coherence achieving a maximum when the interfered fields are completely coherent.

Interferometric WFS’s must maintain a high degree of temporal coherence between

the reference and signal legs of the interferometer. This implies that the beacon for

an interferometric WFS must have a long coherence time ∆tc, which is equivalent

to saying that the beacon must have a narrow optical bandwidth ∆ν since ∆tc ≈
1/∆ν [38]. Therefore, AO systems that rely on an interferometric WFS must generally

have some type of artificial beacon such as a laser guide star or the beam from a free-

space optical-communications channel. Interferometric WFS’s are further limited by

the finite spatial extent of the beacon through the dependence of fringe visibility on

spatial coherence. If the beacon is a perfect point source, spatial coherence is not

an issue since |γ12(0)| = 1. However, beacons with finite spatial extent experience

decreased spatial coherence and therefore degrade fringe visibility and the quality

of interferometric wavefront estimates. Equation (71) also shows the dependence of

fringe visibility on the balance of energy between the two interfered fields. This can

be made more clear by letting I1 = I and I2 = aI in Eq. (71), where a , I2/I1, in

which case

V ∝ 2
√
a

a+ 1
. (72)

This expression shows that visibility is degraded by energy imbalance between the two

legs of the interferometer even if there is perfect coherence. Visibility versus I2/I1 is

plotted in Fig. 6, which shows that the visibility peaks when I1 = I2, although there

is a relatively wide range of values of 0.5 ≤ a ≤ 2 over which V > 0.9. However,

larger imbalances between I1 and I2 can reduce the fringe visibility significantly.

2.6.3 Phase-Shifting Interferometry. Phase-shifting interferometry provides

a means of measuring modulo-2π phase differences ∆φ(x, y) dynamically. Using the
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Figure 6: Fringe visibility and energy imbalance

expression for the interferogram cross term given in Eq. (68), Eq. (66) can be re-

written as

I(x, y) = A +B cos[∆φ(x, y) + θ], (73)

where A = I1(x, y) + I2(x, y) and B = [I1(x, y)I2(x, y)]
1/2 have been defined to sim-

plify the analysis, and θ represents a phase shift introduced into the reference beam.

Multiple phase shifts are required and can be introduced either successively in time

to the whole reference beam or simultaneously to spatially-separated replicas of the

reference beam. In a common approach called the four-bin phase-shifting algorithm,

the reference beam is shifted by θ = 0, π/2, π, and 3π/2 [45, 63]. The resulting inter-

ferograms have the following trigonometric forms:

I1(x, y) = A+B cos[∆φ(x, y)]

I2(x, y) = A+B cos [∆φ(x, y) + π/2] = A−B sin[∆φ(x, y)]

I3(x, y) = A+B cos [∆φ(x, y) + π] = A−B cos[∆φ(x, y)]

I4(x, y) = A+B cos [∆φ(x, y) + 3π/2] = A+B sin[∆φ(x, y)].

(74)
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Figure 7: Point-diffraction interferometer.

Subtracting I2(x, y) from I4(x, y) results in 2B sin[∆φ(x, y)] and subtracting I3(x, y)

from I1(x, y) results in 2B cos[∆φ(x, y)] so that

I4(x, y)− I2(x, y)

I1(x, y)− I3(x, y)
= tan[∆φ(x, y)]. (75)

Therefore, the spatially-varying phase difference between the two legs of the interfer-

ometer can be computed from

∆φ(x, y) = Tan−1

[

I4(x, y)− I2(x, y)

I1(x, y)− I3(x, y)

]

. (76)

The capitalized inverse-tangent-function notation in Eq. (76) indicates use of the

four-quadrant inverse-tangent algorithm, which tracks the signs of the numerator and

denominator of the argument to compute the principal values in the interval [−π, π).

2.6.4 Self Referencing Interferometer. The SRI is a special type of PDI that

interferes an aberrated wavefront with a plane wave obtained by spatially filtering a

sample of the aberrated beam. Figure 7 illustrates the concept of a PDI. A lens

with focal length f1 focuses the incoming wavefront, which passes through a partially

transmissive screen with a pinhole placed a distance f1 behind the lens. The pinhole
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spatially filters the part of the aberrated beam that passes through it, which ideally

creates a point source with a diverging spherical wavefront that is superposed with

the aberrated wavefront partially transmitted by the screen. A second lens, located

a distance equal to its focal length f2 after the screen, recollimates both wavefronts,

which interfere with one another at a photodetector, creating an interferogram. The

phase differences ∆φ(x, y) between the two wavefronts can be extracted using Eq. (69)

or Eq. (76) and phase-shifting techniques. One immediately-apparent concern with

this approach is the adverse impact on the fringe visibility due to the inherent energy

imbalance between the aberrated beam and the plane-wave reference. As discussed

in Sec. 2.6.2, even with perfect coherence, the fringe visibility suffers when there is a

large imbalance between the two interfered wavefronts.

The SRI overcomes the decreased fringe visibility of the PDI by coupling a

sampled portion of the aberrated wavefront into a single-mode fiber, which provides

the spatial filtering. The SRI is illustrated in Fig. 8. In this approach, the energy

balance between the two legs can be better managed by choosing the appropriate

ratio for the beam splitter. Early SRI work assumed amplification of the reference

through stimulated emission in the fiber would be necessary to achieve adequate

visibility, but noise analysis showed that amplification with commercially available

optical amplifiers actually degraded SRI performance [64]. However, if the noise

characteristics of optical amplifiers improve sufficiently, this may again become an

area of research for improving SRI performance. Although the SRI provides improved

fringe visibility compared to a PDI, visibility can still be a significant issue for the SRI

prior to closing the AO loop. Visibility is decreased when very little light is available to

the reference because of poor fiber-coupling efficiency caused by the severely aberrated

input beam. This is yet another reason a hybrid WFS using both a SH WFS and an

SRI has been suggested, since the SH WFS may prove useful in initially closing the

AO loop when the SRI’s fiber-coupling efficiency drops too low.

The fiber-coupled reference beam also provides a means of implementing time-

stepped phase shifting where the phase delays are implemented inside the fiber. For
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Figure 8: Self-Referencing Interferometer.

instance, temporal phase shifting might be implemented by stretching the fiber to

different lengths corresponding to the desired OPD and holding it at each length

long enough to capture images of the interferograms. Alternatively, spatial phase-

shifting techniques use stationary optics to split the reference and signal beams and

redirect them to interfere in separate ‘bins’ at the photodetector array. Spatial phase-

shifting architectures introduce additional hardware complexity and require additional

splitting of available light, but these costs tend to be outweighed by advantages gained

such as insensitivity to temporal atmospheric changes, more stable phase-shifting, and

a much improved ability to tolerate platform vibration [63].

The SRI’s single-mode fiber (SMF) spatially filters the incident wavefront, ide-

ally allowing only the lowest-order Gaussian mode of the input to pass through to

the reference leg. After collimation, the reference is essentially a uniform plane wave

and is assumed to have constant, zero phase across the exit pupil. Therefore, the

phase-shifting equations are simplified by recognizing that ∆φ(x, y) = φ1(x, y), so

the SRI measurements are directly modulated by the spatially-varying phase of the

aberrated wavefront.
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Because the four-quadrant, inverse-tangent operator is limited to phase values

between −π and π, the SRI phase measurements are modulo-2π, or wrapped. There-

fore, SRI phase measurements must be unwrapped before commanding a continuous-

facesheet DM because such a DM cannot apply the sharp 2π discontinuities in the

wrapped phase [63]. However, SRI measurements could directly drive a segmented

piston-only DM or LC SLM. Nearly all phase-unwrapping techniques involve wrap-

ping the gradients computed from the wrapped phase and then integrating over some

path [33]. Since the first step in unwrapping is computation of the phase gradient, this

problem is identical to the phase reconstruction required for a gradient-sensing WFS

such as the Shack-Hartmann sensor. Therefore, the SRI WFS still requires compu-

tationally expensive algorithms and parallel processing to unwrap phase estimates in

real time. However, unlike gradient sensors, the SRI produces measurements that are

mathematically formulated as a linear combination of the complex field with statistics

that are defined by the coherence factor [6]. Because the coherence factor is indepen-

dent of the scintillation index, so are the statistics of the mathematical formulation

of SRI measurements (i.e. formulation error). This predicts that SRI measurements

should be immune to scintillation and is therefore better suited to strong-turbulence

applications [3]. However, SRI sensitivity to scintillation has been observed in labora-

tory experiments using an SRI [18]. The model for SRI phase error presented in Ch. V

shows a weak dependence of SRI measurements on scintillation due to the coupled

effects of random intensity fluctuations and photon noise.

Besides the need for phase unwrapping when driving a continuous-facesheet

DM, there are a few other issues unique to the SRI WFS. Because the SRI is an

interferometer, the optical paths between the beacon and reference must be care-

fully matched to maintain the required temporal coherence between the reference and

the signal wavefront, especially if the reference is amplified through stimulated emis-

sion. Maintaining common path lengths in an SRI that uses spatial phase shifting

is important, since this approach creates four separate paths that must be matched.

However, temporal phase shifting provides its own challenges, especially since AO
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systems are generally used to correct for dynamic phase aberrations. The required

temporal coherence also limits the SRI to monochromatic wavefronts, which limits

their applicability to AO systems that use artificial beacons. Furthermore, because

the SRI averages the field over each subaperture, large tilts can be poorly sensed.

This phenomenon is considered to be responsible for the fact that certain types of

reconstructed gradient measurements outperform the SRI in weak turbulence when

the subaperture side length d is larger than the atmospheric coherence width r0 [63].

Also, when phase measurements are controlling a DM in an AO system with only one

subaperture per actuator, the SRI may not sense attempted DM corrections at points

in the spatial field with zero amplitude (branch points), which can lead to a build-up

of phase on actuators corresponding to branch-point locations [63]. The hybrid WFS

presented in Ch. VI was designed to improve SRI performance as much as possible

by mitigating the impact of these issues through good SRI design and by including a

SH WFS.

2.7 Estimation Theory

Photo-detection involves the interaction of light with matter, which is a pro-

cess with inherent uncertainty that can be treated as a type of noise. Generation of

electrical signals from detected photons can inject additional noise, and reading the

electrical signals from a photodetector causes even more noise. Because light detection

is an inherently noisy process, any sensor relying on it must estimate the best-possible

value of some quantity from noisy measurements. Therefore, statistical decision mak-

ing and estimation theory play an important role in wavefront-sensor design. This

section closely follows the description of statistical decision theory presented by Bar-

rett and Myers [7]. The block diagram for their model of statistical decision making

based on the output of an imaging system is shown in Fig. 9. A wavefront estimator

fits into this model as the observer because it uses images to make decisions about

the incident wavefront. A wavefront sensor includes both the imaging hardware and

the observer. The observer performs one of two types of statistical inference when
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Figure 9: Decision-making process for an imaging system

making decisions based on the output of the imaging system, classification or param-

eter estimation. Classification occurs any time there is a finite number of possible

outcomes and is used in pattern recognition, signal detection, differential diagnosis,

and hypothesis testing. Parameter estimation can be regarded as the limit of hypoth-

esis testing as the number of hypotheses becomes infinite; then the task is estimation

of one or more numerical parameters based on the data. If the observer seeks to

classify the object based on the data, then the observer’s task is classification. For

example, if the object is an orange, then the data might include things like shape,

color, and size. Obviously, classification presumes a great deal of a priori information

about the object, which must be built up from empirical observations of parameters

used to describe the object. If the observer seeks to determine the size of an orange

by measuring it, then the observer’s task is parameter estimation, and the size is a

parameter that may be composed of data such as the circumferences of orthogonal

cross sections of the orange.

A WFS in an AO system may perform either or both of these two statistical-

inference tasks. If an AO system uses a DM with a small number of actuators that

can only accept commands from a finite, discrete set, then the WFS’s job is to deter-

mine which combination of DM commands (i.e. which DM mode) provides the best

wavefront correction, which is a classification task. For a large number of actuators

and/or many possible command values at each actuator, the problem becomes one
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of parameter estimation where the parameters are the actuator commands that best

correct the unwanted wavefront distortions. Most AO systems perform parameter

estimation because of the large number of actuators and possible commands involved.

However, some phase-unwrapping algorithms require branch-point detection, which is

a classification task. While classification and parameter estimation are closely related,

the work proposed here is primarily concerned with parameter estimation. Therefore

the theory relevant to classification tasks (a.k.a. detection theory) is omitted to focus

on the more immediately-relevant task of parameter estimation.

2.7.1 The Decision-Making Process. Statistical decision making assumes

randomness in the information used to make decisions. When it is impossible or im-

practical to know every cause for some observation, then statistics for the observation

become very useful. Classifying some variables as random inputs to a process helps

to simplify predictive models based on deterministic analysis. In fact, determinis-

tic models generally require assumptions of ideal conditions and attribute deviations

from predicted outcomes to the impact of random inputs or noise. Noise defined in

this way is present in every physical process, and models based on sound deterministic

analysis can be optimized for real-world conditions by including the impact of noise

in the decision-making process.

The model shown in Fig. 9 assumes the imaging hardware performs functions

that can be explained with a purely deterministic transfer function (or mapping oper-

ator) H. The data vector g results from this transfer function operating on the object

vector f with deviations from the ideal predictions modeled as a noise vector n. The

mathematical expression for this process is

g = Hf + n, (77)

which comes directly from the definition of noise as the random deviations from the

deterministic predictions of H. The quality of decisions is fundamentally limited by

the fidelity of the deterministic model. However, without properly accounting for
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random inputs, it is impossible to measure how well the deterministic model predicts

outcomes.

2.7.2 Likelihood Functions. Statistical inference about a random process

requires a model for the conditional probability density function (pdf) on the data. In

detection and estimation theory, these conditional pdf’s are called likelihood functions

because they express the likelihood of obtaining the data g from the object f or

from some numerical parameter θ that describes the object. The likelihood function

p(g|f) simply describes the probability of obtaining the data g given the object f .

The likelihood that a set of data represents some parameter θ is described by the

likelihood function p(g|θ).

2.7.3 Cost and Risk Functions. Optimal estimation involves minimizing the

cost or risk associated with incorrectly assigning an estimate θ̂ to the parameter θ.

A cost function C(θ̂, θ) quantifies this cost. A common cost function is the square of

the distance between the parameter and the estimate,

C(θ̂, θ) = (θ̂ − θ)2. (78)

Risk is defined as the average cost function and can be quantified in one of three ways

depending on the averaging operation(s) chosen. These three definitions are

C̄(θ) =
〈

C(θ̂, θ)
〉

g|θ
(79)

C̄(g) =
〈

C(θ̂, θ)
〉

θ|g
(80)

C̄ =
〈

C̄(θ)
〉

θ
=
〈

C̄(g)
〉

g
, (81)

where angle brackets indicate an ensemble average or expected value, and the sub-

scripts on the angle brackets indicate which pdf is involved in the averaging process.

Equation (79) performs the average over many realizations of data for each value of

the parameter to define risk as a function of θ. Barrett and Myers identify this type

57



of risk as indicating a frequentist approach. Equation (80) evaluates the expectation

using the posterior pdf on θ for a given data vector to define the risk as a function of

g, which is a Bayesian-purist approach. Equation (81) gives the Bayes risk, which ei-

ther averages C̄(θ) over an assumed distribution for the values of θ or averages C̄(g)

over an ensemble of possible data vectors. The Bayes risk summarizes the overall

performance of the estimator in the presence of both measurement noise and object

randomness.

2.7.4 Bias, Variance, and Mean Square Error. Bias is a measure of the

closeness of the average value of an estimate
¯̂
θ to the true value of the underlying

parameter θ and is given by

b =
¯̂
θ − θ. (82)

The average value of the estimate is also called the conditional mean since it is cal-

culated from the pdf of the data conditioned on a particular value of θ, i.e. the

conditional mean of an estimate is given by

¯̂
θ =

∫

p(g|θ)θ̂(g)dg, (83)

where the integral is performed over all elements of the data vector g. An estimate

with a conditional mean equal to the true value of the parameter is said to be unbiased.

Barrett and Myers define the estimability of a parameter based on the existence of

an unbiased estimator for all true values of the underlying parameter for some set

of data. Bias often indicates the existence of an error in the estimation model or

incorrect assumptions about the likelihood function used to compute the conditional

mean. In approaches that use the likelihood function to form parameter estimates,

bias due to incorrect assumptions about p(g|θ) may go undetected leading to incorrect

assumptions about the bias of the estimator or even the estimability of the parameter.

If the pdf of the parameter is known, then the average bias b̄ can be defined in terms

of the conditional mean and the true value of the parameter, both averaged over all
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possible values of the parameter, i.e.

b̄ =

∫

p(θ)
¯̂
θdθ −

∫

p(θ)θdθ. (84)

This may result in an average unbiased estimate, which could be used to characterize a

parameter as estimable even if the estimate is biased for some values of the parameter.

While bias is important because it gives a sense of the fidelity of the estimation

model, another important characteristic of an estimate is its ability to reproduce

nearly the same value every time it is applied to a given parameter. Two important

metrics that provide a measure of this characteristic are the variance and the mean

square error (MSE). Variance gives a measure of the variability of estimates around

the conditional mean,

Var(θ̂) =

〈

∣

∣

∣
θ̂ − ¯̂

θ
∣

∣

∣

2
〉

g|θ
. (85)

MSE gives a measure of the variability of estimates around the true value,

MSE(θ) =

〈

∣

∣

∣
θ̂ − θ

∣

∣

∣

2
〉

g|θ
. (86)

The variance and the MSE are the same when the estimate is unbiased. The ul-

timate goals in parameter estimation are eliminating bias and minimizing variance,

since this essentially amounts to estimating the true value of the parameter correctly

and confidently from relatively small numbers of samples. This work employs the

maximum-likelihood approach to combining two WFS’s, which minimizes the vari-

ance and produces an unbiased estimator (see Sec. 2.7.5).

The bias of Eq. (82) is easily generalized to a vector bias b by simply replacing

the scalar quantities
¯̂
θ and θ with vector quantities ¯̂

θ and θ. A full characterization

of the variance of a vector random variable requires computation of the covariance

matrix

Kθ̂ =

〈

(

θ̂ − ¯̂
θ
)(

θ̂ − ¯̂
θ
)†
〉

=
〈

∆θ̂∆θ̂
†〉
, (87)
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where the † superscript indicates the combined conjugate and transpose operations.

The diagonals of Kθ̂ are the variances of the components of θ̂, and the MSE can be

written as

MSE = tr [Kθ̂] + tr
[

bb†
]

, (88)

where tr[M] is the sum of the diagonal elements (the trace) of the matrix M.

2.7.5 Maximum-Likelihood Estimation. Maximum-likelihood estimation

was used in this work to optimally combine two WFS’s into a hybrid WFS. The

maximum-likelihood estimate (MLE) is the value of the parameter θ that maximizes

the likelihood function, or equivalently, the log-likelihood function ln[p(g|θ)], i.e.

θ̂ML , max
θ

{ln[p(g|θ)]} . (89)

The score s describes the sensitivity of the likelihood to changes in parameters and

is given by

s =
∂
∂θ
p(g|θ)
p(g|θ) =

∂

∂θ
ln[p(g|θ)]. (90)

When averaged over the data for a given θ, s is a zero-mean random vector. The

MLE is generally computed by setting s(g, θ) = 0 and solving for θ. The covariance

matrix of the score is called the Fisher information matrix,

F =
〈

ss⊤
〉

g|θ . (91)

Barrett and Myers present an interesting proof based primarily on properties of

positive-semidefinite matrices that

Kǫ ≥ F−1, (92)

with matrix inequality defined according to the Loewner ordering convention (Ap-

pendix A of [7]). Evaluating this inequality at only the diagonal elements of Kǫ and

F formed by defining the random variable as the estimation error ǫ = θ̂ − θ for an
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unbiased estimate results in the following expression for the Cramer-Rao lower bound

(CRLB):

[Kǫ]nn = Var(θ̂ − θ) ≥
[

F−1
]

nn
. (93)

This gives a lower bound for the variance of the estimation error. The CRLB is derived

in standard texts on estimation theory; some use the estimation error as the random

variable [84], while others use the estimate itself [55]. For an unbiased estimator of a

scalar parameter, the CRLB applied to the estimation error reduces to

Var(θ̂ − θ) ≥ 1
〈

[

∂
∂θ

ln[p(g|θ)]
]2
〉 . (94)

For an estimator with bias b, the inequality of Eq. (92) becomes

Kǫ ≥ (∇θb+ I)F−1 (∇θb+ I)⊤ , (95)

where ∇θ indicates the gradient operator with respect to the components of the vector

parameter θ. Therefore, a biased estimator of a scalar parameter has a lower bound

on the variance of the estimation error given by

Var{θ̂ − θ} ≥
(

d
dθ
b(θ) + 1

)2

〈

[

∂
∂θ

ln[p(g|θ)]
]2
〉 . (96)

This form of the CRLB shows the impact of bias on the variance of an estimator. If

the bias is constant, then db(θ)/dθ = 0, and the variance is unaffected by the bias.

This type of bias is often called a known bias, and an unbiased estimator can always

be obtained from it simply by subtracting off the bias [84]. If the bias is a function of

the value of the parameter, the estimate has an unknown bias, and the lower bound

on the variance of the estimate depends on how much b varies with θ [7, 84].

The CRLB holds for any rule for estimating θ. An efficient estimator is one that

attains the equality in Eq. (93), and if an efficient estimator for a parameter exists, the
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MLE of that parameter is efficient. Also, the MLE is consistent, which means that it

converges to the correct value of θ as the number of samples approaches infinity. The

MLE is also asymptotically efficient, which means that it achieves the equality of the

CRLB as the number of samples approaches infinity. Finally, as the number of samples

approaches infinity, the distribution of samples of the MLE is Gaussian. The MLE

also has the property of invariance, which means that the MLE for a function of an

estimated parameter is the function of the MLE for that parameter. These properties

are well-documented in texts on estimation theory and make the MLE a very powerful

method of estimating an unknown parameter, which either is deterministic or has an

unknown random distribution, from random data [7, 55, 84].

The process of finding the MLE for a parameter from data with a known, or at-

least well-characterized, likelihood function is very straight forward. In many cases, it

is simply a matter of setting the score (i.e. the gradient of the log-likelihood equation)

equal to zero and solving for θ. If this cannot be accomplished analytically, it is often

approached numerically through some type of iterative search of the parameter space,

and modern numerical methods offer several methods for quickly converging to the

MLE in such an approach.

2.8 Phase Unwrapping and Reconstruction

An ideal AO system would measure and correct the atmospheric amplitude

and phase perturbations of the complex field of an incident EM wave. Practical AO

systems generally act only on the phase of the optical field since amplification of the

amplitude injects noise, and attenuation discards precious signal power. Phase estima-

tion tends to be far more important in most cases anyway because the field amplitude

often does not vary significantly over the WFS pupil, and pupil phase has a greater

impact on imaging quality [33]. Therefore, the WFS’s main job is phase estimation.

The SH WFS’s phase estimates must be reconstructed from slope measurements, and

the SRI phase estimates must be unwrapped to control a continuous-facesheet DM.

Phase unwrapping and reconstruction are similar processes that can complicate wave-
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Figure 10: Wrapped and unwrapped phase

front sensing. This section outlines the basic theory and discusses the issues involved

in phase unwrapping and reconstruction for optical fields.

2.8.1 Phase Unwrapping. Optical phase is defined as the inverse tangent

of the ratio of the imaginary and real parts of a complex optical field. The inverse-

tangent function has principal values restricted to the interval [−π/2, π/2]. Using

the four-quadrant inverse-tangent function, which tracks the signs of the real and

imaginary parts of a complex number, extends the range of the inverse tangent to

the interval [−π, π]. For most applications, modulo-2π, i.e wrapped, phase is suf-

ficient. However, optical phase has physically significant meaning that motivates

a need to know its unwrapped value because a continuous-facesheet DM must try

to match the shape of the phase. Wrapped phase causes discontinuities in the DM’s

facesheet, which can cause performance degradation if the discontinuities are too large

or poorly placed [53]. Figure 10 illustrates one-dimensional, wrapped and unwrapped

linear phase (top) and quadratic phase (bottom). For a noiseless optical field with
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measurable intensity at all points, phase unwrapping simply involves computation of

phase differences between adjacent points, wrapping those phase differences modulo-

2π, and then integrating along some path. This is sometimes referred to as Itoh’s

method, which operates on two-dimensional fields by first unwrapping the leftmost

column of the phase and then unwrapping each row using the unwrapped value from

the first column as the initial value [33]. Review of the source code for Matlab
r’s

unwrap function reveals that it uses Itoh’s method [47]. Mathematically, this method

of phase unwrapping can be stated as a line integral of gradients over a path C given

by

φ(r) =

∫

C

∇φ · dr + φ(r0), (97)

where ∇φ is the vector field produced by computing the gradient of the phase φ(x, y),

r = (x, y) is a two-dimensional spatial-coordinate vector, and φ(r0) is a constant

phase value taken to be the phase at some reference point (x0, y0).

The unwrapping problem is trivially solved with Itoh’s method as long as the

result of the integration in Eq. (97) is independent of the path. The following equiv-

alent, necessary, and sufficient conditions for path independence of some directional

derivative F are helpful in understanding difficulties that arise in phase unwrapping:

∮

F · dr = 0, (98)

and

∇× F ≡ 0. (99)

The condition in Eq. (98) requires that the integral of F around every simple closed

path is zero, while the condition of Eq. (99) says that path independence holds as

long as the curl of F is identically equal to zero. The gradient, which is a conservative

vector field since the curl of the gradient is identically equal to zero, meets both of

these conditions. Problems with unwrapping occur at points where F contains a

rotational vector component in addition to the phase gradient. This is where the fact
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that the phase is defined as a function of the complex field becomes important since

branch points, which cause rotational components in the phase, are shown to occur at

locations where the complex field goes to zero [31,33]. Fortunately, the two conditions

above for path independence of the unwrapping line integral provide guidance in

solving the unwrapping problem when F is not conservative. Equation (98) provides

a way of identifying path dependence in an unwrapping problem, and Eq. (99) suggests

methods for unwrapping the phase correctly even when the solution depends on the

path.

Ghiglia and Pritt apply the theory of complex functions to derive an expression

for the wrapped phase Ψ of a complex function in the vicinity of a point where the

amplitude of the complex function goes to zero. The analysis expands a bounded

complex function s(x, y) about an arbitrary complex value z0 with a Laurent-series-

expansion function f(z, z∗). In the vicinity of z0, z is also a function of its loca-

tion (x, y) in s(x, y). Therefore the complex distance (z − z0) from a point z =

s(x, y) to a nearby point z0 = s(x0, y0) is related to the spatial distance given by

[(x− x0)
2 + (y − y0)

2]
1/2

. When the complex function is identically zero at the point

(x0, y0), the behavior of the complex function at nearby points is governed by the

magnitude r and phase θ of the complex distance (z− z0). The wrapped phase at the

points in the vicinity of a zero in the complex function is then given by

Ψ = tan−1[(2α− 1) tan θ], (100)

where 0 ≤ α ≤ 1 gives the weight of the contributions of the complex distance

(z−z0) and the conjugate of that distance (z−z0)∗ [33]. When α = 1 then Ψ = θ (for

small θ), and only the complex distance (z − z0) affects the wrapped phase. When

α = 0 → Ψ = −θ and only the conjugate of the complex distance affects the wrapped

phase [33].

Figure 11 shows a plot of what Ghiglia and Pritt call a typical local phase

function that results from setting α = 1 and θ = tan−1 (ℑ{z − z0}/ℜ{z − z0}) in
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Figure 11: Example of phase near a branch point

Eq. (100). The point where the complex function s(x, y) goes to zero is located at the

origin.4 Integration of the gradient of the phase shown in Fig. 11 in a counterclock-

wise path that encloses the origin results in a value of 2π, which indicates that phase

unwrapping depends on the path of integration. Ghiglia and Pritt call such points

phase residues because they are analogous to the residues of complex functions. Con-

tour integrals that contain a single phase residue are not equal to zero and, in fact,

can only be equal to ±2π. The discontinuity that extends from the phase residue

to the edge of the phase in Fig. 11 is called a branch cut because it indicates the

transition between two branches, which are defined as the many different 2π inter-

vals that contain equally valid solutions to functions of a complex variable z such as

ln(z) or tan−1(z) [13]. Points in a complex function that cannot be encircled without

encountering a branch cut are called branch points, which is another term commonly

used in AO literature for phase residues [13]. It is important to distinguish between

branch cuts and wrapping cuts [86]. Both appear as lines (or cuts) defining 2π jumps

in phase caused by restricting the phase values to a 2π interval. However, branch cuts

indicate dependence of the unwrapping solution on the integration path and must

not be crossed in performing the phase-unwrapping line integral in order to produce

4ℜ(u) was defined in Sec. 2.6 as returning the real part of a complex number u. Likewise, ℑ(u)
returns the imaginary part of u.
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consistent unwrapped phase solutions. Branch cuts terminate somewhere inside the

wrapped phase while wrapping cuts either form closed paths or run from edge to edge

in a truncated region of wrapped-phase measurements.

The directional derivative of the phase of an optical field with branch points

violates Eq. (99), which suggests the existence of vector components in addition to

the gradient. The directional derivative of such a field could be represented as the

sum of the contributions of the gradient and curl components, i.e. [29]

F = ∇φ+∇× F . (101)

Equation (101) gives a more appropriate expression for the directional derivative

of phase for a wavefront that has propagated through strong turbulence. In order to

estimate the wavefront, a WFS must be able to measure both components in Eq. (101).

Applying the phase-unwrapping line integral of Eq. (97) to phase with branch points

by replacing ∇φ with F leads to the unwrapping integral

φUW =

∫

C

∇φ · dr +

∫

C

∇× F · dr + φ(r0). (102)

Therefore, the unwrapped phase φUW can be found by summing the irrotational part

of the phase found by integrating the phase gradient, the rotational part of the phase

associated with non-zero values of ∇× F , and the offset φ(r0).

The unwrapping integral for the irrotational phase is independent of the path,

but this is not true for the rotational phase. If the irrotational phase is isolated and

unwrapped separately, the rotational phase is found by subtracting the irrotational

phase from the original wrapped phase [86]. One common approach to unwrapping

the irrotational phase defines a system of difference equations for the phase gradient

and then solves this system using least-squares methods. Least-squares unwrapping

produces phase estimates at each point as the average value of the line integral of

Eq. (97) computed over every possible path leading to each point from the location of
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the offset φ(r0) [29]. If the phase has no rotational part, the least-squares solution is

the exact unwrapping solution, since integration over every path in a conservative field

results in exactly the same value. Therefore, the least-squares unwrapper provides

a means of isolating the gradient of the phase and unwrapping it separately. The

unwrapped phase can then be found from

φUW = φLS + φR

= φLS +W[φW − φLS] , (103)

where φLS is the least-squares-phase-unwrapping solution, and φR is the rotational

part of the phase found from subtracting the φLS from the original, wrapped phase

φW and wrapping the result, which is indicated in Eq. (103) by the wrapping operator

W[·] [53,60]. This dissertation refers to this method as the least-squares principal value

(LSPV) unwrapper.

The reason the local phase function in Fig. 11 is called typical becomes clear after

observing rotational phases from simulated atmospheric propagation through strong

turbulence. Figure 12 shows the rotational phase from a simulated field generated

by numerical propagation of a point source through atmospheric phase screens with

a total-path r0 of 7.5cm over a distance of 15km. This clearly shows multiple branch

points connected by branch cuts. As with the typical local phase function shown in

Fig. 11, integration of the gradient of this phase in a counterclockwise path enclosing

each branch point results in a value of ±2π.

2.8.2 Phase Reconstruction from Slope Measurements. The SH WFS does

not measure the phase directly, but instead measures the wavefront slope, which is

related to the phase of the incident optical field. Phase reconstruction from Shack-

Hartmann slope measurements is similar to the phase-unwrapping problem addressed

in the previous section. However, unlike phase unwrapping, which integrates wrapped

gradients computed from wrapped phase measurements, the Shack-Hartmann WFS
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uses measurements that contain phase-gradient information. The SH phase-gradient

measurements depend on their alignment with DM actuators, which is where the

phase must be estimated. In the earliest days of AO research, Fried, Southwell, and

Hudgin all recognized that least-squares reconstruction provided an effective means

of estimating phase from slope measurements, and each proposed different alignment

geometries [28, 40, 76].

Fried’s geometry (Fig. 13) places the phase estimates (indicated by circles in

Fig. 13) at the corners of the subapertures, the centers of which are the assumed

locations of the SH sensor’s horizontal and vertical slope measurements (indicated in

Fig. 13 by right- and up-pointing arrows) [28]. In Fried’s approach, the slopes are

related to the average differences between phase values at the subaperture corners.

For example, the phase values at the corners of the upper-left subaperture are related
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Figure 13: Fried’s alignment geometry.

to the slope measurements at the center of that subaperture by

s1 =
1

2
(φ6 − φ1 + φ7 − φ2)

s17 =
1

2
(φ1 − φ2 + φ6 − φ7) , (104)

where the phase values φi are elements of a vector containing the 25 phase estimates

ordered by column-major order (up→ down, left→ right), and s1 and s17 are elements

of a slope-measurement vector containing the horizontal slope measurements in ele-

ments 1–16 and vertical-slope measurements in elements 17–32, also in column-major

order.

The alignment of slope measurements and phase estimates for the Hudgin geom-

etry is illustrated in Fig. 14, where again circles indicate phase estimates and arrows

indicate slope measurements. Using a similar ordering scheme to that described above
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Figure 14: Hudgin’s alignment geometry.

for Eq. (104), the slope measurements and phase estimates for the upper-left subaper-

ture are related to each other in the Hudgin geometry by

s1 = φ5 − φ1

s2 = φ6 − φ2

s13 = φ1 − φ2

s16 = φ5 − φ6. (105)

In this case, there is a separate equation for each slope measurement since the dif-

ferences between phase values at the subaperture corneres are not averaged together

as is done in the Fried geometry [40]. Again, for Eq. (105) the phase-estimate and

slope-measurement vectors are ordered using a column-major order; the horizontal

slopes are in elements 1–12 of the slope vector, and the vertical slopes in elements

13–24.
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Figure 15: Southwell’s alignment geometry.

The Hudgin geometry can only be directly applied to slope measurements when

the horizontal- and vertical-slope sensors can be aligned separately. Since the SH

sensor’s horizontal- and vertical-slope measurements are co-located, the Hudgin ge-

ometry cannot be used directly with SH measurements. However, the Southwell

geometry introduces the intermediate step of averaging together slope measurements

from adjacent SH subapertures, which then allows application of the Hudgin geometry

to reconstruct phase estimates at the centers of the SH subapertures [76]. Figure 15

illustrates the location of slope measurements and phase estimates for the Southwell

geometry. Overlaying the Hudgin and Southwell geometries, shown in Fig. 16 (Hud-

gin in gray, Southwell in black), illustrates how the two geometries ultimately use

the same reconstruction approach, except that the Southwell geometry includes the

intermediate step of averaging adjacent SH slope measurements.

Once an alignment geometry is selected, a linear system of equations can be

written using either Eq. (104) or Eq. (105), as appropriate. This system of equations
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Figure 16: Overlaid Hudgin and Southwell geometries.

can then be used to solve for the phase using least-squares-error minimization, which

can be implemented for fast computation with linear-algebra techniques [15,76]. Note

that in the earlier discussion on phase unwrapping, least-squares techniques were

used to estimate the unwrapped phase from the wrapped phase differences. In fact,

phase unwrapping generally involves the computation and wrapping of adjacent phase

differences followed by the application of the Hudgin-geometry reconstructor to the

wrapped phase differences.

Fried and Hudgin both developed expressions numerically from simulation data

for noise-propagation error associated with their reconstruction approaches [28,40,50].

Motivated by their work, Noll analytically derived a general expression for the noise-

propagation error of least-squares reconstruction techniques [50]. Later, Wallner

showed that when least-squares reconstruction is performed with an optimized, closed-

loop control law, noise-propagation error depends only on the density of actuators and

is no longer sensitive to the alignment geometry [88]. Hunt and Southwell achieved
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similar results for noise-propagation error using a matrix formulation of least-squares

reconstruction, which also presented a very fast method for wavefront reconstruc-

tion [15,76]. In all cases, the noise-propagation error increased in proportion to a very

small, constant factor multiplied by the natural logarithm of the number of phase es-

timates across the WFS. Therefore, phase-reconstruction can actually attenuate noise

for WFS’s with relatively few subapertures and only begins to amplify noise for large

numbers of subapertures. Even then, the noise-propagation factor is generally only

slightly more than unity. For example, Hudgin’s expression for noise-propagation

error is given by [40]

ǫ = 0.561 + 0.103 lnN, (106)

where N is the number of phase estimates across a dimension of the WFS (i.e N2 is

the total number of phase estimates). Therefore, when there are a large number of

subapertures, a WFS in the Hudgin geometry, e.g. a WFS with 4096 phase estimates,

results in a noise propagation factor about one, e.g. ǫ = 0.989 for 4096-phase-estimate

WFS. The noise-propagation error increases to only 1.06 for 16,384 phase estimates,

which is an extremely large number of subapertures. Therefore, for practical WFS’s,

noise-propagation error of wavefront reconstructors does not generally amplify mea-

surement error.
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III. Review of Related Research

The literature review supplied motivation for a hybrid WFS, identified the best can-

didates for inclusion in a hybrid WFS, identified gaps in published work that needed

to be filled in order to design a hybrid WFS, provided the analytical foundation for

designing a hybrid WFS, and surveyed published attempts to combine the WFS’s se-

lected for inclusion in the hybrid WFS. Based on the information presented in Ch. II,

the primary requirements of the hybrid WFS were identified as improved performance

over previously-studied WFS’s in strong scintillation and the potential for effective

wavefront sensing with extended beacons. As indicated in the background material,

the SH and SRI WFS’s were identified as the best way to meet these requirements.

Therefore, this review of related research is organized as follows: The first section

presents a brief discussion of research related to effective wavefront sensing with ex-

tended beacons to justify inclusion of the SH WFS in the hybrid. The second section

discusses the reported impact of scintillation on WFS’s. The third section summarizes

reported research on the SRI. The fourth section presents relevant research regarding

the SH WFS. The last section discusses recent efforts that have actually combined

the SRI and SH WFS’s.

3.1 Extended Beacons

This work does not explore approaches to using the hybrid WFS with extended

sources, but the SH WFS was selected for use in the hybrid WFS so that future

work could continue in this area. Since extended-beacon capabilities were only mo-

tivation for inclusion of the SH WFS, a comprehensive review of literature on the

subject is not presented here. However, for those interested in exploring the hybrid

WFS’s performance with extended beacons, a good starting point is provided by

Poyneer, who summarized the most promising approaches to the estimation of wave-

front slopes from Shack-Hartmann data using extended beacons. Her analysis showed

how slope-estimation performance depends on scene content and scales with illumi-

nation [56]. The various methods she discusses for wavefront sensing with extended
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beacons include maximum-likelihood estimation, deconvolution, and minimum-least-

squares matching of subaperture images. Poyneer favored the least-squares-matching

approach over the MLE approach due to issues related to computational cost, and she

rejected deconvolution because of its poor noise-propagation characteristics [56]. The

least-squares-matching approach maximizes the correlation between subaperture im-

ages and is implemented using fast Fourier transforms [56]. Later experimental results

showed correlation-based WFS’s produced more accurate, more robust, and less noisy

slope measurements than a centroiding algorithm, even when using a point source [58].

Furthermore, correlation algorithms enable slope measurements from an extended

source. Correlation-based slope sensing could be improved further to improve the

hybrid WFS’s performance. For example, Cain’s approach uses an image-projection

technique and maximum-likelihood estimation that incorporates previous measure-

ments to greatly increase the speed and accuracy of correlation-based WFS’s [17].

In summary, it has been well-established in the literature that SH WFS’s can

be effective with extended beacons. The references cited here are only examples to

illustrate this and justify the choice of the SH WFS for inclusion in the proposed

hybrid WFS.

3.2 Wavefront Sensors in Strong Scintillation

Fried and Vaughn showed that scintillation causes branch points and branch

cuts in the phase of propagated wavefronts [31]. Their initial response to the prob-

lem of branch cuts was to position them so that they mainly ran along areas of low

intensity, which minimized the unavoidable errors associated with placing the discon-

tinuous branch cuts on a continuous-facesheet DM [31]. This, of course, assumed that

the branch cuts could be sensed by the WFS. Later, Fried explored the issue of branch

points further and found that they prevent complete reconstruction of the wavefront

from slope measurements using least-squares reconstructors due to the existence of a

‘hidden’ phase that contains the branch points and branch cuts [29]. This phase is

only hidden in the sense that least-squares methods cannot reconstruct it from slope
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measurements, since, when branch points are present, the curl term of Eq. (101) is not

equal to zero (see Sec. 2.8). Fried also developed a closed-form solution for the hid-

den phase and used it to suggest a branch-point-tolerant wavefront reconstructor that

required knowledge of branch-point locations [29]. In related work, Tyler formulated

the problem of hidden phase in terms of slope discrepancy, which is the difference be-

tween slope measurements from a WFS and the gradient of the WFS’s reconstructed

phase [81]. Tyler used Fourier analysis to decompose WFS slope measurements into a

gradient component, which he showed was identical to the least-squares-reconstructed

phase, and the slope discrepancy, which includes the curl term of Eq. (101) as well

as noise and fitting error. These observations were very similar to Fried’s, but Tyler

also developed a wavefront reconstructor that estimated both the gradient and curl

components of the phase without needing to know the location of branch points. Soon

after, Fried published a report that described the complex exponential reconstructor,

which was a multigrid method of reconstructing the least-squares and hidden phase

from slope measurements that was originally developed but never published by Itek

Corporation during the 1980’s [30]. Barchers and Fried et al. reported wave-optics

results on the performance of the complex exponential reconstructor in the Fried and

Hudgin geometries [4, 5]. These studies showed that the complex exponential recon-

structor had some success in reconstructing the hidden phase especially when using

slope measurements from a lateral-shearing interferometer (LSI). However, phase re-

constructed from SH slope measurements remained sensitive to scintillation, especially

at Rytov numbers greater than 0.2 and when d/r0 was larger than 1/4 [3,5]. The LSI

performed better than the SH WFS with the complex exponential reconstructor but

still showed sensitivity to scintillation and actually did worse than the least-squares

reconstructor when d/r0 > 1/2 [3, 4].

It is important to note that the studies discussed above examined the impact of

scintillation on the formulation error of slope sensors. Formulation error is the error

associated with the mathematical formulation of WFS measurements and represents

the ideal case. Therefore, the problems suffered by slope sensors in strong scintillation
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are fundamental, and no amount of clever manipulation of intensity data to produce

improved SH slope measurements (e.g. windowing, subaperture weighting, or Fourier

analysis) is expected to alleviate them.

3.3 Self-Referencing Interferometer

Motivated by the poor performance of slope sensors in strong turbulence and

strong scintillation, the Air Force Research Laboratory’s (AFRL) Starfire Optical

Range (SOR) began work on a WFS inspired by the PDI concept [63]. The formula-

tion error of the PDI had been shown to be insensitive to scintillation and therefore

showed promise for providing improved performance in extended-turbulence condi-

tions [6, 63]. Wave-optics results confirmed this and showed that the SRI clearly

outperformed slope sensors in strong scintillation even when the slope sensors used a

complex-exponential reconstructor [3]. However, the comparison study also showed

that the SH WFS using a least-squares reconstructor provided the best performance

at large values of d/r0 and weak scintillation [3]. This observation was one of the first

motivations for consideration of a hybrid WFS.

Since the SRI concept proved promising theoretically, SOR developed a proto-

type and test facility to demonstrate it and evaluate its performance [63]. Published

reports about the SRI during this period concentrated on comparison of temporal ver-

sus spatial phase-shifting approaches and the impact of optical amplification of the

reference beam [18, 63, 64]. While temporal phase shifting was shown to have some

benefits, spatial phase shifting appears to have been favored since it is less sensitive to

temporal atmospheric effects and showed superior performance in laboratory demon-

strations [6, 18, 64]. Laboratory demonstrations of the SRI also showed a sensitivity

to scintillation that was not predicted by previous theoretical work [18]. This result

clearly showed room for further analysis of SRI wavefront-estimation errors.

Several issues stand out as potential reasons for the discrepancy between the

theoretical predictions of SRI performance and the laboratory observations. First

of all, the theoretical studies, and even the wave-optics simulations, only addressed
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formulation error. This is the error associated with the mathematical formulation of

SRI WFS measurements as the subaperture-averaged optical field. None of the pub-

lished theoretical or simulation work actually implemented a four-bin, phase-shifting

phase-estimation algorithm. Another issue is that the metric used to evaluate SRI per-

formance in the analytical work was the field-estimation Strehl ratio, which provides

a measure of how well the WFS estimates the real and imaginary parts of the incident

optical field. The laboratory demonstration, by practical necessity, used Strehl ratio

of the DM-corrected beam as the performance metric. To control a DM, the SRI field

measurements must be converted into phase estimates, which was not directly ad-

dressed by the analytical work. Finally, the primary impact of scintillation addressed

by the theoretical and simulation studies was that associated with branch points and

branch cuts. The only study on the impact of noise on SRI measurements quantified

it with the field-estimation Strehl ratio and did not include random fluctuations of

classical intensity as a noise source [64]. Because these studies concentrated only on

formulation error and field-estimation Strehl ratio, they did not adequately address

the combined impact of scintillation and sensor noise on phase estimation. The fun-

damentally random process of photodetection combined with random fluctuations of

classical intensity is well-documented [34]. Therefore, this was identified as an area

of research that should be pursued to properly design a hybrid WFS. Also, because

phase must be estimated in order to control a DM, the impact of SRI phase-estimation

error was identified as requiring investigation before design of the hybrid WFS could

begin. Both of these areas of research are addressed by the work presented in Ch. V

of this dissertation.

3.4 Shack-Hartmann Wavefront Sensor

The SHWFS has been in wide use for a long time. Not surprisingly, an enormous

body of work exists that analyzes it from numerous perspectives, and numerous ways

of improving its performance have been proposed. Therefore, it is impractical to

present an exhaustive review of literature related to the SH WFS. Also, since the
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focus of this work has been on modelling noise rather than improving the performance

of a SH WFS, the centroid method of computing wavefront slopes from SH intensity

images was selected as the mode of operation for the hybrid WFS’s SH sensor. Because

a detailed listing of work related to improving SH slope measurements or optimally

reconstructing them into wavefront estimates would be extraneous, it is not included

here. However, a great deal of such work was reviewed, and good examples are found

in [8], [17], [26], [41], [57], [70], and [79], just to list a few.

While explorations into the limitations of Shack-Hartmann WFS’s in scintilla-

tion have generally not included sensor noise (see Sec. 3.2), there is a significant body

of published work on noise-induced centroid error in the absence of scintillation. Tyler

and Fried address position-measurement error associated with white detector noise

for a quad cell in [83]. In [91] Winick derives an expression for the CRLB for the

shot-noise-induced variance of Gaussian-spot position measurements using an infinite

detector array with non-negligible dark current. In Appendix A of [36], Hardy derives

a general expression for image position measurement error, which turns out to be iden-

tical to Winick’s CRLB when a Gaussian spot is used for the image function and dark

current is neglected. In [66] Roddier presents a rule of thumb for slope error associ-

ated with noise-induced position error. Irwan and Lane emphasize the significance of

spot shape and detector array size on centroid measurement error in [41] and develop

expressions for optimizing performance with the appropriate selection of key param-

eters. Tyler discusses these types of errors in terms of their contributions to slope

discrepency, which he points out are insignificant compared to the slope discrepancy

associated with branch points [81]. In [79], Thomas et. al. conduct a comprehensive

review of centroid computation and optimization algorithms that are all rooted in

the latest understanding of noise-induced centroid errors. While this discussion by

no means includes all work related to centroid-measurement errors, these references

represent a core collection of useful insights for optimally designing Shack-Hartmann

WFS’s given a deterministic intensity.
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In the past five years, WFS research has begun to explore the impact of scintil-

lation and extended beacons. For example, Thomas et al. reported work on optimal

wavefront sensing with elongated laser guide stars. [78]. Also, Robert et al. and

Vedrenne et al. have reported work that provides analytical models for the impact

of scintillation-induced slope errors on SH wavefront estimation when using extended

sources as the beacon [65, 85]. However, what appears to be lacking in the literature

is a simple treatment of the interaction between photodetection noise and random

intensity fluctuations and the impact of this coupling on the fidelity of SH slope mea-

surements. In order to design a hybrid WFS that meets the stated requirements,

a model for such error is necessary. Chapter IV presents the results of work that

addressed this need.

3.5 Work Combining WFS’s for Deep Turbulence

Combining multiple WFS’s is not a new idea. Roggemann and Schulz combined

Shack-Hartmann slope measurements with a conventional image to extend the dy-

namic range of the Shack-Hartmann WFS [67, 68]. Patterson and Dainty presented

a means of using a Shack-Hartmann WFS with astigmatic lenslets and subaperture

quad-cell detectors to simultaneously measure both phase gradients and curvature and

showed improved sensitivity of mirror modes for a membrane DM [51]. Phillips and

Cain combined pupil- and image-plane data in a maximum-likelihood estimator to

extract images from laser detection and ranging (LADAR) data in a post-processing

algorithm that is less sensitive to atmospheric turbulence than deconvolution [54].

More recent work has been published reporting efforts to combine an SRI and a

SH WFS in a hybrid approach for mitigating the performance degradation caused by

extended-turbulence conditions. Belen’kii et al. report positive results in a labora-

tory demonstration of a conventional SRI-based AO system combined with an off-axis

SH WFS used in a wavefront-based stochastic, parallel gradient descent (SPGD) al-

gorithm [10]. The wavefront-based-SPGD (WBSPGD) approach is used in an AO

system designed to pre-compensate a laser beam in order to achieve a high concentra-
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tion of energy within the smallest area possible at a target. In WBSPGD, the WFS

views the laser return from off-axis so that it does not ‘see’ the DM. Measurements

from the WFS are then used to form a single metric that is optimized by control-

ling the DM actuators with the SPGD algorithm. Since the goal of WBSPGD is

the highest possible concentration of energy at the target, the WFS metric is formed

to provide information about the spot size at the target. Based on the principle

that high-spatial-frequency phase fluctuations are averaged out over the finite extent

of extended beacons, Belen’kii et al. selected the inverse of the aperture-averaged

local-wavefront slope variance as the metric to minimize with SPGD [10,11]. In their

experiment, they used a thermal-blooming cell to spread the outgoing laser and phase

wheels etched to have Kolmogorov statististics to simulate atmospheric turbulence.

In the hybrid system described by Belen’kii et al., the WBSPGD AO corrects beam

spread due to beacon anisoplanatism and thermal blooming so that the conventional

AO system can work with a beacon that is much closer to being a point source [12].

The reason for choosing the SRI as the WFS used in the conventional AO system was

not discussed [10]. However, since the SRI is designed to operate with a point-source

beacon, it seems likely that the WBSPGD approach was, in part, developed to assist

an SRI-based AO system. Belen’kii et al. reported results for the WBSPGD acting

alone and showed that it did indeed decrease spot size and increase intensity at the

target compared to an uncompensated beam. They also showed results for the hybrid

compared to an uncorrected beam and noted significant improvement (maximum per-

formance gain of 4.9 and mean performance gain of 2.1) [10]. The hybrid system also

did notably better than the WBSPGD alone. Unfortunately, they did not compare

the hybrid results to the SRI-based AO system operating alone, so it must simply be

inferred that the hybrid performed better than the stand-alone SRI would have since

it was operating with a better beacon.

The work of Belen’kii et al. demonstrates the feasibility of a hybrid WFS that

uses measurements from a SH WFS to condition the beacon so that an SRI-based AO

system can operate effectively. This concept is related to the motivation for using a
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SHWFS to eventually aid in extended-beacon wavefront sensing with the hybrid WFS

proposed in this work. However, the hybrid approach proposed by Belen’kii et al. is

dramatically different from the hybrid approach explored in this dissertation. First

of all, the WBSPGD concept requires the SH WFS to be placed off-axis. The hybrid

approach proposed in Ch. VI places both WFS pupils optically conjugate to the DM

plane and has them work in tandem to perform conventional, phase-conjugating AO.

In fact, the hybrid WFS proposed in this work could be used in combination with the

WBSPGD approach. Since WBSPGD does not result in perfect beacon conditioning,

a hybrid WFS used in the conventional AO system could still provide performance

improvements over stand-alone-SRI-based AO combined with WBSPGD.

3.6 Motivation for a Hybrid WFS

The intended purpose of a hybrid WFS is to improve performance over a range

of scintillation strengths and open a way for operating in strong scintillation with

extended beacons. A significant body of AO research related to strong scintillation,

extended beacons, and beacon anisoplanatism has developed over the past 20 years

in response to the identified need to perform AO in deep-turbulence conditions. Deep

turbulence is characterized by a Rytov number much greater than one, which causes

significant degradation of the beacon due to scintillation and also has a very small

isoplanatic angle associated with it. This type of turbulence can easily develop for

propagation paths as short as 2 kilometers at high C2
n values such as those that occur

at low altitudes during the day time [59,82]. Deep-turbulence applications also often

rely on beacons formed by reflected sunlight, laser illumination, or infrared ‘hot-spot’

emission, which by their nature are extended sources [82]. This problem poses signifi-

cant challenges that are very different from those addressed by conventional AO. One

problem associated with extended beacons is beacon anisoplanatism, which occurs

when the source used as a beacon has finite extent that exceeds the isoplanatic patch

size of the atmosphere. This results in a field at the WFS pupil that is essentially the

sum of wavefronts from a multitude of point sources that have experienced partially
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correlated atmospheric conditions. Research in this area has shown that informa-

tion about the atmospheric conditions of the propagation path is lost due to beacon

anisoplanatism, so conventional AO fails to determine the DM commands required

to correct the atmospheric distortions [82]. Multiconjugate adaptive optics (MCAO)

show promise for increasing the isoplanatic angle and mitigating the effects of bea-

con anisoplanatism [82]. MCAO involves the use of multiple DM’s placed optically

conjugate to a number of planes along the propagation path to perform atmospheric

corrections in sections. One suggested method of implementing MCAO is to use range

gating to produce multiple beacons by capturing Rayleigh-backscattered laser light

at multiple points along the propagation path [82]. One application of this technique,

called bootstrap-beacon AO, uses range gating of Rayleigh backscatter to close the

AO loop on a beacon that is relatively close and then gradually moves the range

gate further away to compensate over longer distances [73]. Another method does

not require a WFS at all but uses an image metric and gradient-descent algorithms

to apply the DM corrections [82]. WFS-based MCAO would be significantly limited

by the high level of scintillation in the beacon, but it might be useful for partially

compensating for the part of the atmosphere near the transmitting aperture [82].

Gradient-descent MCAO (or tomography) would most likely be limited to controlling

a small number of actuators due to the scaling of convergence times with the number

of actuators controlled. It may turn out that some combination of WFS-based MCAO

and gradient-descent tomography along with irradiance-redistribution adaptive optics

and branch-point-tolerant phase reconstructors will provide a solution to the prob-

lem of deep turbulence. The one lesson that is clear from reported research on the

deep-turbulence problem is that the WFS’s used must be able to deal with extended

beacons and scintillation. These issues, along with the characteristics of the SH and

SRI WFS’s discussed in Secs. 2.5 and 2.6, motivated the design of the hybrid WFS.
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IV. A Model for Shot-Noise-Induced Centroid Error

4.1 Introduction

Adaptive optics systems correct optical distortions caused by propagation of

light through a turbulent atmosphere. AO can greatly improve image quality in

ground-based astronomical telescopes, significantly decrease bit-error rates in free-

space optical communication, and enable beam-projection applications over long dis-

tances or through strong turbulence. In such systems, scattered laser light is often

used to provide the beacon for measuring atmospheric distortions. Propagation dis-

tances that are long enough for the beacon to become scintillated cause difficulties for

the wavefront sensors used to measure the atmospheric distortion. This is particu-

larly true for the Shack-Hartmann WFS, which has been shown to perform poorly at

measuring scintillated optical fields [5]. One issue that impacts Shack-Hartmann per-

formance involves reconstruction of branch cuts in the phase of a scintillated optical

field. This issue has been a significant focus of research in wavefront reconstruction

techniques for improving the performance of WFS’s that operate in strong turbu-

lence [3–5,30,31]. However, these studies only evaluated the impact of scintillation on

intensity-weighted gradients and did not address errors of the centroid measurements

themselves. The question remains as to how significantly sensor noise impacts Shack-

Hartmann measurements in scintillation. This is an important question because the

answer helps to better define the performance limitations of Shack-Hartmann sensors

and also provides insight into optimum design of Shack-Hartmann sensors that may

be required to operate in some level of scintillation.

While explorations into the limitations of Shack-Hartmann WFS’s in scintilla-

tion have generally not addressed centroid error, there is a significant body of pub-

lished work on noise-induced centroid error in the absence of scintillation. Tyler and

Fried address position-measurement error associated with additive, white detector

noise for a quad cell in [83]. In [91] Winick derives an expression for the Cramer-Rao

lower bound (CRLB) for the shot-noise-induced variance of Gaussian-spot position

measurements using an infinite detector array with non-negligible dark current. In
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Appendix A of [36], Hardy derives a general expression for image position measure-

ment error, which turns out to be identical to Winick’s CRLB when a Gaussian spot

is used for the image function and dark current is neglected. In [66] Roddier presents

a rule of thumb for slope error associated with noise-induced position error. Irwan

and Lane emphasize the significance of spot shape and detector array size on cen-

troid measurement error in [41] and develop expressions for optimizing performance

with the appropriate selection of key parameters. In [79], Thomas et. al. conduct

a comprehensive review of centroid computation and optimization algorithms that

are all rooted in the latest understanding of noise-induced centroid errors. While

this discussion by no means includes all work related to centroid-measurement errors,

these references represent a core collection of useful insights for optimally designing

Shack-Hartmann WFS’s given a deterministic intensity.

The work presented here deals with a fundamental measurement-noise-related

limitation for a Shack-Hartmann sensor operating on a scintillated field. Specifically,

an expression is developed for the first time that models the centroid error resulting

from photon noise in the presence of atmospherically induced fluctuating intensity,

i.e. scintillation. Because the number of photons per subaperture is closely tied

to the size of the subapertures, a model for centroid error due to photon noise and

scintillation becomes an important parameter in sensor design studies. This chapter

presents a model for photon-noise induced centroid error that accounts for scintillation

and compares it to results from wave-optics simulations. The model matches the

simulation results reasonably well for d/r0 = 1/4, 1/2 and 1 and for Rytov numbers

from 0 to 1.5 and shows that for high enough photocounts, Shack-Hartmann centroid

measurements are largely insensitive to scintillation. However, at lower photon levels,

scintillation and photon noise can contribute significantly to overall centroid error.

A Shack-Hartmann sensor uses a lenslet array placed at the exit pupil of a

telescope to segment an incident wavefront and measure local wavefront slopes. If the

lenslet array samples the incident wavefront finely enough, the images produced by

the lenslets (or subapertures) are nearly diffraction-limited spots, and each wavefront
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Figure 17: Shack-Hartmann Subaperture Geometry
Wavefront slope θW is equal to the angular transverse spot displacement θT for a
plane wave incident on a lenslet with focal length fℓ.
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segment is well-approximated by a tilted plane wave. A photodetector array placed at

the lenslets’ common back focal plane provides a means of measuring the displacement

of each subaperture spot. Figure 17 shows a geometric-optics ray diagram for a tilted

plane wave incident on a single lenslet used to estimate wavefront slope from spot

displacement. In this diagram, fℓ is the focal length [m] of the lenslet, ∆W is the

optical pathlength difference (OPD) [m] between points on the wavefront separated

by the distance d [m], θW is the angle between the wavefront and the pupil plane of

the lenslet, and θT is the angle between the optical axis and a line from the center of

the lenslet to the focused spot, which is displaced from the optical axis by the distance

T [m]. The geometry shows that θW = θT so that the wavefront slope is given by

∆W

d
=
T

fℓ
. (107)

In the paraxial approximation, θ ≈ tan θ, so the wavefront slope can be approximated

directly by θT . For a spot at the focal plane of a lenslet on which a tilted plane wave

is incident, the angular measure of spot displacement in the x direction is given by

the centroid

cx =

∞
∫

−∞

∫

xI(x, y)dxdy

∞
∫

−∞

∫

I(x, y)dxdy

, (108)

where I(x, y) is the intensity [W/sr], and x and y are angular coordinates [rad].

The photon-noise-limited variance of centroid measurements has been derived

and presented in a number of references [36,91]. In these derivations, the shape of the

image is assumed to be known and only its position is uncertain. While some sources

address the impact of spot shape on centroid error, fluctuations of the spot shape are

generally neglected [36, 41, 70, 79]. Furthermore, the only source of variation in total

photocount is assumed to be caused by detector noise. Under these assumptions, the
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variance due to Poisson-distributed photon noise can be written as [41]

σ2
cx =

1

K

∫

Adet

∫

x2f(x, y)dxdy, (109)

where K is the total photocount within the subaperture, and f(x, y) is a shape func-

tion for the intensity distribution. The shape function is normalized so that it inte-

grates to unity. For a point-source beacon, f(x, y) is the point-spread function (PSF)

but can also be a general image function for estimating the position of an extended

object. Equation (109) and similar expressions have been used to derive models that

characterize the impact of a variety of parameters such as the size of detector-array

pixels, the size of the detector array, the shape and size of the object or beacon, and

the impact of optical aberrations. Because previous work on this type of centroid

error is well-documented, it is not repeated here. Instead, the model proposed here

applies only to WFS’s that have already been designed to minimize the impact of

these critical sources of centroid error.

The goal of the work presented here is to develop a model for centroid error

that accounts for the doubly stochastic nature of centroid measurements when the

incident optical field is scintillated. A model that includes scintillation should (and

does) reduce to Eq. (109) in the absence of classical intensity fluctuations. Such a

model enhances previously developed models by including the effect of scintillation.

Also, because the doubly stochastic nature of centroid measurements for a scintillated

field is due only to the photon noise and the classical intensity fluctuations, other

sources of noise such as detector read noise and quantization error are not addressed

here. Therefore, to isolate the centroid error due to photon noise from other sources

of centroid error, the selected metric for the model developed in the following section

is the centroid-error variance σ2
ǫx . This metric is the variance of the centroid error ǫx,

which is defined as

ǫx = cxN − cx, (110)
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where cx is the centroid computed from intensity without shot noise, and cxN is the

centroid computed from Poisson-distributed photocounts of intensity.

4.2 Centroid-Error Variance in Scintillation

When stochastic fluctuations of classical intensity are present, photocount statis-

tics must be considered to be based on a conditional probability distribution [34]. The

unconditional statistics of photocounts K are determined by marginalizing the condi-

tional probability of K over the statistics of integrated intensity, which is the intensity

integrated over the detector solid angle Adet and integration time τ . Therefore, the

analysis must account for the conversion of integrated intensity into photocounts,

which is facilitated by definition of the factor

α =
ηq
hc/λ

, (111)

where ηq ≤ 1 is the detector quantum efficiency, h is Planck’s constant [6.626196 ×
10−34 J·sec], c is the speed of light in vacuum [≈ 2.998 × 108 m/sec], and λ is the

optical wavelength [m].

The angular measure for the x-component of the centroid of a spatial-intensity-

distribution function I(x, y) is given by Eq. (108). If the spatial distribution of in-

tensity is adequately sampled, the centroid can be estimated using a discrete N ×N

photodetector array by replacing the integrals over the intensity in the centroid equa-

tion with photocount summations, i.e.

ĉx =

N2
∑

i=1

xiKi

K
, (112)

where xi is the angular x-coordinate of the center of the i
th pixel. For a given I(x, y),

the mean photocount of the ith pixel is given by

〈Ki〉 = ατ

∫ xi+wp/2

xi−wp/2

∫ yi+wp/2

yi−wp/2

I(x, y)dxdy (113)
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where wp is the angular extent of each dimension of a square pixel. This form as-

sumes that intensity fluctuations have a minimal impact over the integration time.

The assumption that intensity fluctuations are minimal over the duration of the in-

tegration time is valid either for point-source beacons with very long coherence times

or for pseudothermal beacons with short coherence times relative to the integration

time [34]. In the second case, WFS’s require that the beacon’s coherence time is

shorter than the sensor’s integration time, which must, in turn, be shorter than the

temporal evolution of atmospheric phase disturbances, since these are what the WFS

is measuring [87].

Equation (113) expresses the mean photocount of the ith pixel as the integral

over a continuous intensity that is a function of position. However, to evaluate the

behavior of the pixel photocounts over the statistics of spatially varying intensity, it

is helpful to define mean pixel photocounts in terms of the total subaperture intensity

I and shape function f(x, y) as

〈Ki〉 = ατAdetI

∫

Ai

∫

f(x, y)dxdy

= ατAdetIfi, (114)

whereAi is the solid angle of the ith pixel of the detector array and fi =
∫∫

Ai
f(x, y)dxdy

is the fraction of light incident on the ith pixel. This definition of mean pixel photo-

counts can only be applied to subapertures that are small enough to ensure scintilla-

tion is well-correlated within a subaperture. Based on a model for aperture-averaging

of scintillation presented in [1], scintillation can safely be assumed to be well-correlated

over subapertures sized so that d ≤ r0.

To examine the centroid statistics, it is helpful to define a random variable ci,

which is the contribution from the ith pixel to the centroid calculation. For a given

average subaperture photocount 〈K〉 =
∑N2

i=1〈Ki〉, the centroid represents a mono-

tonic variable transformation of the pixel photocount Ki. Therefore, the expected
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value of ci is given by

〈ci〉 =
xi
〈K〉〈Ki〉, (115)

and the variance is given by

σ2
ci

=

(

xi
〈K〉

)2

σ2
Ki

=

(

xi
〈K〉

)2

〈Ki〉. (116)

The assumed Poisson distribution of the photocounts has been used to set σ2
Ki

= 〈Ki〉
in Eq. (116). Although the photocounts at individual pixels are closely related to

one another through the shape function, the photocount fluctuations due to Poisson-

distributed photon noise at different pixels are independent. Essentially, instead of

assuming independent, identically distributed noise, this model assumes independent,

deterministically distributed noise. When the detector array has a sufficient number

of pixels, and the spot has a large number of photons, the centroid variance can be

expressed as

σ2
cx|b =

N2

∑

i=1

(

xi
〈K〉

)2

〈Ki〉 . (117)

Up to this point, the only source of randomness addressed has been photon

noise, i.e. intensity and spot shape have been assumed to be deterministic. Use of

the centroid-error metric defined in Eq. (110) removes any variation inherent in the

centroid calculation and results in a metric for centroid-error variance that isolates

the impact of photon noise. However, because photon noise is Poisson-distributed,

it has a mean value that depends on the intensity of the incident light, which can

also fluctuate randomly before photodetection. Therefore, Eq. (117) only gives a

conditional variance [34]. This is why the subscript is written as cx|b, where b is

a vector representing all of the random parameters on which the variance given by

Eq. (117) is conditioned. The unconditional variance of a random variable X given

a particular value y for the random variable Y comes from the conditional variance
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formula

σ2
X = E [(Var(X|Y = y)] + Var [E(X|Y = y)] , (118)

where E(·) is the expected-value operation and Var(·) is the variance operation [69].

The second term in Eq. (118) accounts for variation caused by a mean that has

been conditioned on a random parameter. Therefore, the centroid error associated

with intensity fluctuations and photon noise comes from averaging σ2
cx|b over the

randomly fluctuating intensity caused by scintillation. A fully unconditional model

for centroid-error variance could theoretically be derived by successive application

of the conditional-variance formula to multiple random parameters. However, such

extensions of the model could be very difficult to achieve in practice. For example, for

subaperture sizes larger than the atmospheric coherence cell (i.e. d/r0 > 1), intensity

fluctuations can also be caused by random variation in the spot shape. Inclusion of

fluctuating intensity caused by random spot shape in the model for centroid-error

variance would require an expression for the variance of the mean photocounts for all

possible spot shapes, which would be a very difficult problem in itself. To simplify

the model and obtain results that at least include the impact of scintillation, this

work employs the widely used assumption that the spot shape does not fluctuate.

Although the spots are broadened due to turbulence, they are assumed to have fixed

shapes. Spot shape is analyzed in greater detail in Sec. 4.2.2 below.

Restricting attention to small subapertures (d/r0 ≤ 1) allows substitution of

Eq. (114) for 〈Ki〉 in Eq. (117), so the conditional centroid variance can be written as

σ2
cx|b =

1

ατAdetI

N2

∑

i=1

x2i fi. (119)

Equation (119) allows
∑

x2i fi to be separated from the intensity I and placed outside

integrals over the probability density function (pdf) of random intensity. Averaging

Eq. (119) over the intensity results in the the unconditional centroid-error variance
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given by

σ2
ǫx =

∑

i

x2i fi

ατAdet

∫ ∞

0

1

I
pI(I)dI, (120)

where pI(I) is the pdf of the randomly fluctuating classical intensity. Under the first-

order Rytov approximation for light with phase and amplitude fluctuations caused

by atmospheric turbulence, the classical intensity fluctuations follow a log-normal

distribution [1]. Although experimental observations have shown that the log-normal

pdf does not perfectly describe intensity fluctuations in strong scintillation, it results

in tractable integrals that provide simple, closed-form expressions for the variance of

intensity-based measurements such as the centroid. The log-normal pdf of intensity

is given by

pI(I) =
1

Iσ
√
2π

exp

[−(ln I − µ)2

2σ2

]

, (121)

where µ and σ are parameters related to the intensity mean 〈I〉 and variance σ2
I by

µ = ln

(

〈I〉2
√

σ2
I + 〈I〉2

)

= ln

(

〈I〉
√

σ̃2
I + 1

)

(122)

and

σ2 = ln

(

σ2
I

〈I〉2 + 1

)

= ln
(

σ̃2
I + 1

)

. (123)

In Eqs. (122) and (123), the log-normal-pdf parameters µ and σ have been expressed

in terms of the scintillation index defined by [1]

σ̃2
I ,

σ2
I

〈I〉2 . (124)
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Substituting the log-normal pdf into Eq. (120) and performing the integration leads

to the final expression for the unconditional centroid-error variance

σ2
ǫx =

1

ατAdet

e−µ+σ
2/2
∑

i

x2i fi

=
1

〈K〉
(

σ̃2
I + 1

)

∑

i

x2i fi. (125)

Equation (125) is the key result of this chapter. It expresses the centroid-

error variance as a function of the average total number of photons incident on a

subaperture, the distribution of the spot within the subaperture, and the scintillation

index. For a continuous, infinite detector, Eq. (125) becomes

σ2
ǫx =

1

〈K〉
(

σ̃2
I + 1

)

∞
∫

−∞

∫

x2f(x, y)dxdy, (126)

which, in the absence of scintillation, reduces to Eq. (109). Therefore, previous ex-

pressions for centroid error that have neglected scintillation can include scintillation

effects, assuming the intensity obeys a nearly log-normal distribution, by multiplying

the no-scintillation centroid error by (σ̃2
I + 1).

To illustrate the effectiveness of the centroid-error model in the absence of scin-

tillation, Fig. 18 shows the model for centroid error (a.k.a. normalized position error)

given by taking the square root of Eq. (125) (with σ̃2
I = 0) plotted as a function of

pixel size, which is characterized in the plot by the number of pixels nT per full width

at half max (FWHM) of the assumed spot function. For these results, a Gaussian

spot shape was used, both in the model and for the simulated spots. The plot shows

simulation results (solid, gray line labeled ‘Simulation Outcome’ in the legend) and

the Gaussian-spot approximation (dash-dotted, black line) computed from the closed-

form expression of centroid error that results from assuming a Gaussian spot shape

and continuous detector array and evaluating the resulting integral in Eq. (126). The

simulations were performed by generating 500 realizations of a Gaussian spot sized
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Figure 18: Centroid Error Vs. Pixel Size

to match the central lobe of a diffraction-limited spot for a rectangular aperture with

20, 100, and 500 total photons incident on the subaperture. The spots were randomly

positioned to be centered on average but have rms jitter in the x-direction equal to 0.1

times the pixel size and no jitter in the y-direction. Photon noise was simulated by

passing the spots to a Poisson random-number generator. Similar results have been

reported previously in [32] and [79], however these publications only showed simula-

tion results and the value computed from the closed-form expression associated with

a Gaussian-spot approximation. The dashed, black lines in Fig. 18 show the results

of the suggested model, which were generated by actually performing the summation

in Eq. (125) over an appropriately sized, normalized Gaussian spot. This shows that

the model presented here matches simulation results better than previously-reported

models, even for large pixels, where the closed-form expression fails to accurately

predict the photon-noise-induced centroid error.

4.2.1 Impact of the Intensity Probability Density. As mentioned above, some

experiments have shown that the lognormal pdf does not always provide the most

accurate description of intensity probability densities. A natural question arises as to

how much of an impact the assumed intensity pdf has on the centroid-error variance
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model presented in the previous section. The gamma-gamma pdf has been suggested

as an improvement over the lognormal pdf for the strong-scintillation regime [1].

Therefore, the gamma-gamma pdf is used here to derive a model for centroid-error

variance. The result is significantly different from that reached using the lognormal

pdf. The gamma-gamma pdf of intensity is expressed as

pI(I) =
2(α̃β)(α̃+β)/2

Γ(α̃)Γ(β)〈I〉

(

I

〈I〉

)(α̃+β)/2−1

Kα̃−β

(

2
√

α̃βI/〈I〉
)

, I > 0, (127)

where 〈I〉 is the expected value of intensity, α̃ and β are parameters related to large-

and small-scale atmospheric effects1, Kp(x) is a modified Bessel function of the second

kind, and Γ(z) is the gamma function [1]. For zero inner scale and a spherical-wave

model, α̃ and β are given by

α̃ =






exp







0.20 ln(σ̃2
I + 1)

{

1 + 0.19 [ln(σ̃2
I + 1)]

6/5
}7/6






− 1







−1

β =






exp







0.20 ln(σ̃2
I + 1)

{

1 + 0.23 [ln(σ̃2
I + 1)]

6/5
}5/6






− 1







−1

. (128)

Substituting the gamma-gamma pdf given by Eq. (127) into Eq. (120) and evaluat-

ing the integral leads to a model for the centroid-error variance. The integral over

the gamma-gamma pdf can be solved using a table of integrals, {see Integral 16 of

Appendix II in [1]}, which results in a centroid-error variance given by

σ2
ǫx =

∑

i

x2i fi

〈K〉

[

α̃β

(α̃− 1)(β − 1)

]

. (129)

This model for centroid-error variance behaves very differently in strong turbulence

from the model given by Eq. (125).

1The notation α̃ is used to distinguish large-scale atmospheric effects from the quantum conversion
factor defined in Eq. (111).
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Figure 19: Impact of Intensity pdf on Centroid-Error Model

Figure 19 plots Eqs. (125) and (129) (normalized by
∑

i x
2
i fi/〈K〉) over a range

of values for the Rytov number σ2
χ. These results indicate that the form of the pdf used

can have a drastic impact on the model of centroid-error variance. Although the ex-

pressions above for α̃ and β were developed from theory, Andrews and Phillips report

in [1] that these parameters actually had to be adjusted to achieve a match between

theory and experimental results. The important point here is that the assumed pdf

of intensity has a significant impact on the model for centroid-error variance. How-

ever, both the lognormal and gamma-gamma pdf’s result in a model for centroid-error

variance that captures its dependence on scintillation strength. The intensity pdf’s

computed for wave-optics data presented in Sec. 4.3 match the lognormal pdf more

closely than the gamma-gamma pdf, so Eq. (125) was used as the model for centroid-

error variance. However, the lognormal pdf does not match the wave-optics data as

well for small values of d/r0, which also corresponds to an observed discrepancy be-

tween the model for centroid-error variance and that measured from the simulations.

This is not caused by improper simulation methods but is an unavoidable artifact

associated with random intensity fluctuations. Other authors have studied this issue

with varying degrees of success at getting simulated pdf’s to match theory [1,23,39].
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A significant advantage of the approach to developing the model for centroid-error

variance presented here is the ability to evaluate the impact of different intensity pdf’s

on centroid error. While it may be possible to develop models similar to the one given

by Eq. (125) using heuristic arguments, such models could not necessarily be adjusted

to account for different intensity pdf’s.

4.2.2 Accounting for Atmospheric Spread in SH Spots. All previous stud-

ies on centroid error develop expressions that ultimately depend on the shape of the

intensity function. Many investigators assume a Gaussian spot [91]. Others derive

expressions in terms of the system optical transfer function (OTF), which is related

to the PSF through a Fourier transform [83, 89]. Irwan and Lane use a similar ap-

proach to develop expressions for centroid error due to truncation by a finite detector

array and photon noise that also account for atmospheric spread of the diffraction-

limited spot for a circular aperture [41]. Thomas et al. develop an expression for

the diffraction-limited spot of a square aperture that estimates the impact of photon

noise on centroid error, which scales with detector-array size [79]. However, Eq. (125)

is general, so any shape function can be used for f(x, y) in the integral over pixel

area to determine the values for fi. With the speed and precision of modern com-

puters, numerical integration over a given shape function provides a suitable means

of evaluating Eq. (125). The centroid-error-variance model compared against wave-

optics results in Sec. 4.3 is computed in just this way using a sinc2 function. Since

phase effects have a much greater impact on spot shape, and thereby centroid error,

than intensity effects (such as scintillation) [35], the model needs to account for non-

diffraction limited spot shapes caused by phase aberrations. However, at subaperture

sizes d ≤ r0, the phase effects are relatively small and primarily result in a spreading

of the spot without significantly changing its shape or causing it to break up. The

model for centroid-error variance due to scintillation and photon noise is adjusted to

account for subaperture aberrations caused by the atmosphere by adjusting a width

parameter in the shape function.
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Figure 20: Shack-Hartmann Subaperture Average Spot Shape, d/r0 = 1/4

Figures 20 through 22 illustrate the spreading of spots in SH subapertures as

d/r0 increases. In Shack-Hartmann WFS’s with square subapertures, the spot-shape

function is

f(x, y, w) = sinc2
( x

w

)

sinc2
( y

w

)

, (130)

where w is the width of the spot. In a diffraction-limited, square subaperture with

side length d and focal length fℓ, w = λfℓ/d (for spatial coordinate x specified in me-

ters). If the subapertures were circular, the PSF’s could be estimated by performing

a Fourier-Bessel transform of the turbulent OTF [34]. However, because SH subaper-

tures are square, Eq. (130) provides a more accurate estimate for the PSF. For square

subapertures with d ≤ r0, aberrations due to atmospheric turbulence and scintillation

can be accounted for by changing w to a value that generates a PSF that more closely

approximates the system PSF. This effective spot width can be computed by

weff = wDL ×

∞
∫

−∞
Hopt(fX)dfX

∞
∫

−∞
Hopt(fX)Hatm(fX)dfX

, (131)
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Figure 21: Shack-Hartmann Subaperture Average Spot Shape, d/r0 = 1/2

where wDL is the width parameter used for a diffraction-limited spot, Hopt is the

optical transfer function (OTF) of the optics, Hatm is the OTF of the atmosphere,

and fX = x/(λfℓ) is the spatial frequency component in the x-direction. Here x is

in units of meters. For a square aperture, the one-dimensional OTF of the optics is

given by

Hopt(fX) = Λ

(

fX
2f0

)

, (132)

where 2f0 = d/(λfℓ) is the spatial cutoff frequency, and Λ(x) is the triangle function

defined as [35]

Λ(x) =







1− |x| |x| ≤ 1

0 otherwise.
(133)

The short-exposure OTF of the atmosphere is defined as

Hatm(ρ) = exp

{

−3.44

(

ρ

r0

)5/3 [

1− a
(ρ

d

)1/3
]

}

, (134)
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Figure 22: Shack-Hartmann Subaperture Average Spot Shape, d/r0 = 1

where ρ = (f 2
X+f 2

Y )
1/2 is a radial spatial frequency coordinate, and a is a scintillation

parameter; a = 1 in the absence of scintillation, and a = 1/2 when scintillation is

present [34]. Equation (134) was derived by assuming a circular aperture [27].

Given a set of values for d, r0, and a, the effective spot width weff can be

computed by substituting Eqs. (132) and (134) into Eq. (131) and evaluating the

integrals numerically. Figures 20 through 22 show plots of width-adjusted PSF’s fit

to the average spot shapes computed from wave-optics simulations for a point-source

propagation over a 75km path length through atmospheric turbulence with r0 =

7.5cm. The SH subapertures were sized to achieve d/r0 = 1/4 (Fig. 20), d/r0 = 1/2

(Fig. 21), and d/r0 = 1 (Fig. 22). As d/r0 increases, the spreading of the spot is

clearly evident, but for d/r0 ≤ 1 the spots resemble a diffraction-limited shape closely

enough to permit the approximation presented above, which leads to a close fit of

the width-adjusted PSF to the central lobe of the average spots, as shown in Figs. 20

through 22. This approximation provides the benefit of a centroid model that can

be quickly computed for a wide range of operating conditions and design parameters.

When d/r0 > 1, the plot in Fig. 22 suggests that the average spot may be better
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approximated by a function other than the sinc2 function. Specifically, techniques

involving inverse-Fourier transforms are discussed in [34] for approximating average

PSF’s that are the combination of a diffraction-limited “core” and a much broader

“halo”, which Fig. 22 suggests may be a better approximation for subaperture spots

when d/r0 > 1.

4.3 Testing the Model against Wave-Optics Simulations

4.3.1 Wave-Optics Atmospheric Propagations. Wave-optics simulations

provide a test of how well the model represents physical reality [25]. Atmospher-

ically distorted optical fields were obtained by numerically propagating an on-axis

point source through 40 atmospheric realizations, each modeled by ten Kolmogorov

phase screens. The phase screens were evenly spaced throughout the propagation path

and designed to provide a total-path atmospheric coherence width of r0 = 7.5cm. The

point source was propagated using the angular-spectrum form of the Huygens-Fresnel

integral with multiple partial-propagation planes separated by distances and sampled

with spacings designed to mitigate aliasing effects [19, 72]. For scintillation effects,

the point source was propagated over eight different distances ranging from 5km to

75km in 10km increments. A 1024×1024 grid was used to propagate the point source

to obtain optical fields at the observation plane inside a 256 × 256 central region of

interest. The case of no scintillation was simulated using a complex field with uniform

amplitude and phase from a single Kolmogorov phase screen.

The 256×256 optical fields, cropped from the propagated 1024×1024 fields, cor-

responded to a 1.2m square region so that partitioning these fields with a 16×16 array

of subapertures resulted in d/r0 = 1. Extracting smaller regions from the 256 × 256

fields enabled smaller values of d/r0, but also resulted in fewer samples in the fields

(128 × 128 samples for d/r0 = 1/2 and 64 × 64 samples for d/r0 = 1/4). Also, to

maintain the same diffraction-limited spot size relative to the size of the pixels in

the subaperture detector array, the focal length of the lenslets was adjusted for each

different subaperture size (see Sec. 4.3.2). Therefore, to avoid aliasing in the propaga-
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Figure 23: Aperture Size in Wave-Optics Simulations

tion through the SH subapertures, the 256× 256-sample fields were interpolated to a

denser grid before extracting the central regions used to obtain smaller values of d/r0.

Figure 23 shows the sizes of the apertures used in the wave-optics simulations on an

image of the field amplitude for a case of strong scintillation (75km propagation dis-

tance, Rytov number ≈ 1.5). As Fig. 23 shows, the extracted fields corresponded to

60cm and 30cm square regions for the d/r0 = 1/2 and d/r0 = 1/4 cases, respectively.

The fidelity of the atmospheric phase effects in the observation fields was evalu-

ated by comparing the computed coherence factor of the fields with theoretical predic-

tions. Also, since this work evaluates the behavior of the SH WFS in scintillation, the

intensity pdf was plotted along with plots of the lognormal and gamma-gamma pdf’s.

Figure 24 shows these plots for the 75km propagation distance and d/r0 = 1. This

shows that the coherence factor matches theory exceptionally well in this case, and

the intensity pdf is closely approximated by the lognormal pdf. While the gamma-

gamma pdf is typically considered to be more appropriate for strong turbulence than

the lognormal pdf, several authors have shown that getting wave-optics simulations

to match any particular theoretical intensity pdf is challenging [1, 23, 39]. In fact, as
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Figure 24: Uninterpolated Data Intensity and Phase Statistics, d/r0 = 1

mentioned in Sec. 4.2.1, Andrews and Phillips had to adjust the α̃ and β parameters

in the gamma-gamma pdf empirically to obtain good agreement with simulations,

rather than use the theoretically-calculated values [1]. Initial inspection of both the

uninterpolated and interpolated fields extracted from the propagated fields to achieve

smaller values for d/r0 appeared to show similar fidelity. However, slight discrepan-

cies between the centroid-error model and the wave-optics results, which are shown

in Sec. 4.3.4, motivated closer inspection. Figures 25 and 26 show that the fidelity

of the phase remains very good for both the uninterpolated and interpolated fields of

the d/r0 = 1/4 case. Figure 26 illustrates the impact of interpolation on the intensity
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Figure 25: Uninterpolated Data Intensity and Phase Statistics, d/r0 = 1/4

pdf (blue ×’s), but the subaperture-averaged intensity pdf (red dots) for the interpo-

lated data (Fig. 26) is very similar to that for the uninterpolated data (Fig. 25). The

most significant observations about the intensity pdf’s in Figs. 24 through 26 are the

deviation from the lognormal pdf caused by subaperture averaging and the deviation

from the lognormal pdf with decreasing subaperture size.

As shown in Sec. 4.2.1, the intensity pdf can have a significant impact on the

centroid-error variance. This deviation of the simulations’ intensity pdf’s from the

assumed lognormal pdf seems to be the most likely explanation for the small amount

of deviation between the centroid-error-variance model and the simulation results pre-
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Figure 26: Interpolated Data Intensity and Phase Statistics, d/r0 = 1/4

sented in Sec. 4.3.4. However, the discrepancy between the centroid-error model and

the simulation results was small enough that further simulations aimed at achieving

better fidelity of the intensity statistics were not warranted, especially since the be-

havior of intensity in strong scintillation is not well understood, and analytical models

are based on heuristic arguments and experimental observations [1]. In fact, a num-

ber of authors have attempted to formulate expressions for statistical moments of

intensity and/or intensity pdf’s that match simulation and experiment [1, 23–25,46].

Generally, simulation has matched experiment better than theory, and agreement has

yet to be reached on a suitable form for intensity pdf’s in the focusing and asymptotic
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regimes [1, 24]. In short, determining a suitable pdf of intensity in the presence of

scintillation is an active area of research, and discrepancies between simulation and

theory appear to be commonly observed. The method employed here to develop a

model for photon-noise-induced centroid-error variance that accounts for scintillation

permits adaptation of the model by substitution of the whatever expression for the

intensity pdf is deemed appropriate for the situation at hand.

4.3.2 Shack-Hartmann Model. The Shack-Hartmann model generated spot

patterns by applying a lenslet-array phase delay to the simulated optical fields and

then performing a numerical Fresnel propagation over a distance equal to the focal

length of the lenslets. The lenslets were square, and side lengths d were chosen to be

1/16 the length of the observation region of interest, which were selected to achieve

the desired value of d/r0, e.g for r0 = 7.5cm, a full aperture size D = 1.2m with 16

subapertures across resulted in d/r0 = 1, while D = 30cm resulted in d/r0 = 1/4.

When the lenslets and their corresponding detector-array regions are the same size,

the lenslet focal length can be computed by

fℓ =
nsd

2

npλ
, (135)

where ns is the number of pixels per diffraction-limited half-spot, and np is the number

of pixels across a subaperture side. The values for ns and np were chosen to minimize

their contribution to centroid error based on previous work presented in [41] and [91],

and the focal length of the lenslets was selected for the different values of d/r0 using

Eq.(135). Winick derived the Cramer-Rao lower bound for centroid error as a function

of pixel size relative to the size of a Gaussian spot on an infinite detector, which is

effectively characterized by ns [91]. However, for a diffraction-limited spot on a finite

detector, Irwan and Lane showed in [41] that centroid error grows with detector array

size and is also impacted by truncation error if the detector array is too small relative

to the spot size. Based on their work, eight pixels/subaperture was chosen as the value

for np, which ensured the detector integration area was sufficiently larger than the
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spot to avoid significant truncation error given the amount of tilt variance computed

for the simulated optical fields.

4.3.3 Centroid-Error Variance Model. The model for centroid-error vari-

ance was implemented using Eq. (125). The scintillation index used in the model was

that computed from the wave-optics observation fields, since scintillation metrics from

wave-optics simulations have been shown to match experimental data better than the-

ory [25]. A sinc2 function was used for the spot shape and was numerically integrated

over the pixels using adaptive Simpson quadrature. This step of numerically integrat-

ing the spot function over the pixels produces much more accurate results when spots

are spread over a small number of pixels than closed-form expressions developed by

integrating an analytical spot function over the pixel area. The value for K was set

to the average number of photons/subaperture used to set the photon levels of the

Shack-Hartmann spots.

4.3.4 Simulation Results. The metric for the wave-optics simulation results

was the square root of the variance of the centroid error defined in Eq. (110). The sim-

ulation results were compared with the model for centroid-error variance by plotting

the square root of the computed centroid-error variances. Figures 27 through 30 show

results for d/r0 = 1, 1/2, and 1/4 for 50, 200, 800, and 3200 photons per subaperture.

In Fig. 27, centroid error is plotted versus photon level for the case of no scintillation;

the blue markers show data from the simulation results, and the dashed, red lines

show the predictions from the model. The lines showing the model predictions are

not labeled since it is well understood that centroid error decreases with decreasing

d/r0. This figure shows that the best match between the model and the simulations

occurs for d/r0 = 1/2 and that the model slightly under-predicts centroid centroid

error for smaller values of d/r0 and slightly over-predicts centroid error for larger val-

ues of d/r0. This may indicate that the spot shape has less impact on centroid error

than expected. Ultimately, the data shows that, in the absence of scintillation and

for d/r0 ≤ 1, the subaperture size does not significantly impact centroid error. Also,
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Figure 27: Centroid-error Vs. photon level, no scintillation

the deviation of the model from the simulation results is small, and the model still

captures the trend of decreasing centroid error with decreasing d/r0.

In Figs. 28, through 30, centroid error is plotted as a function of Rytov num-

ber; the gray lines show the wave-optics results, and the dashed black lines show

the prediction of the model given by the square root of Eq. (125). At the higher

photon levels, the model matches the simulation outcomes well. As the photocounts

decrease, the simulation results begin to deviate from the model slightly. However,

the model matches the wave-optics simulation results well enough to provide reason-

able predictions for centroid-error variance over a range of values for d/r0, number of

photons, and the scintillation index. Also, there is slightly better agreement between

the d/r0 = 1 results and the model than there is for the d/r0 = 1/2 and d/r0 = 1/4

cases. As discussed in Secs. 4.3.1 and 4.2.1, the discrepancy at smaller values of d/r0
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Figure 28: Centroid-error simulation results for d/r0 = 1

is likely due to the poorer agreement between the intensity pdf of the simulation data

and the lognormal pdf assumed in deriving Eq. (125). However, there is reasonable

agreement between the model and the simulation results for all cases of d/r0, and the

model does a good job of predicting the trends of the centroid error associated with

photon noise in the presence of scintillation. Furthermore, obtaining agreement of

probability densities for intensity in simulations, experiment, and theory is an active

area of research. The model presented in Eq. (120) is general enough to allow the

centroid-error variance to be modeled for a variety of intensity pdf’s.

Figure 31 shows the model and wave-optics results for centroid-error σǫx along

with the full centroid error σcx from the simulation for the lowest photon level at

d/r0 = 1/4. This shows that the centroid error due to scintillation and photon noise

can make up a significant portion of the overall centroid error. The model provides a

way of evaluating the design parameter space to ensure such error remains below an

acceptable level.
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Figure 29: Centroid-error simulation results for d/r0 = 1/2

4.4 Conclusion

A very useful model has been presented for centroid error due to shot noise and

scintillation. When scintillation is absent, the model reduces to the standard model

assumed for photon noise only. Also, for subaperture sizes smaller than the atmo-

spheric coherence width, the model can be adjusted to account for aberrations caused

by the atmosphere. The model matches results of wave-optics simulations reasonably

well. If enough light is available, the centroid-error variance due to scintillation and

photon noise becomes relatively insensitive to scintillation. However, at low light

levels, it is significantly impacted by scintillation in the weak regime. Also, at low

light levels in small subapertures relative to r0, the centroid-error variance becomes a

significant part of the overall centroid variance.

The model is presented in a general form for any shape of intensity distribution

and can be evaluated by numerically integrating over a complicated shape function or

by assuming a simple shape function to attain more analytical solutions. Previously

developed models that assumed constant intensity can be adjusted to account for
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Figure 30: Centroid-error simulation results for d/r0 = 1/4

scintillation using the model presented here. Finally, the presented model of centroid-

error variance could be developed further by recognizing it as a conditional centroid

variance and applying the conditional centroid variance formula to examine the impact

of factors such as random centroid displacement and spot size.
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Figure 31: Full centroid-error simulation results
Noise-induced centroid error σǫx can be a significant portion of full-centroid error σcx .
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V. A Model for Shot-Noise-Induced Phase Error in SRI

Measurements

5.1 Introduction

Adaptive optics systems correct optical distortions caused by propagation of

light through a turbulent atmosphere. AO can greatly improve image quality in

ground-based astronomical telescopes, significantly decrease bit-error rates in free-

space optical communication, and enable beam-projection applications over long dis-

tances or through strong turbulence. Historically, the choice of WFS in an AO system

has been heavily influenced by the intended application’s operating conditions. For ex-

ample, the strongest atmospheric turbulence is concentrated in a relatively thin layer

near sea level, and wavefront distortions are relatively weak when they do not have

long propagation paths over which to accumulate large phase deviations. In such con-

ditions, scintillation, which is the occurence of random amplitude fluctuations in the

received optical field, can largely be neglected. However, when the path between the

source and receiver occurs over large volumes of constant turbulence strength, scintil-

lation causes problems for traditional WFS’s such as the Shack-Hartmann WFS and

can severely limit the effectiveness of AO correction [5]. Also, many AO systems use

an artificial beacon with quasi-monochromatic light, which enables coherent wavefront

sensing. The SH WFS’s poor performance in strong turbulence and the availability of

a powerful, narrow-band beacon motivated the development of the SRI. The SRI is a

relatively new approach to wavefront sensing that promises to extend AO operating

regimes beyond weak fluctuations of the propagation medium and potentially provide

drastic performance improvement in optical systems operating over long, horizontal

propagation paths [63].

Measurements from an SRI can be mathematically formulated as the subaperture-

averaged input optical field. SRI measurements therefore derive their statistical be-

havior from the mutual coherence function (MCF) with τ = 0 (see Sec.2.2), which is

referred to as the coherence factor. According to strong-turbulence theory, the MCF

is independent of the scintillation index, so the formulation error of SRI measurements
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was hypothesized to be insensitive to scintillation [6]. Wave-optics simulations have

shown that the formulation error, characterized by the field-estimation Strehl ratio,

is indeed insensitive to scintillation and therefore performs much better in strong,

constant-strength turbulence than the SH or LSI WFS’s [3].

However, AO systems that use a single deformable mirror (DM) to correct only

phase distortions in the incident field rely on the WFS’s ability to estimate optical

phase, and the field-estimation Strehl ratio no longer fully characterizes the losses

due to WFS estimation errors. The bulk of previously published work on SRI perfor-

mance has used the field-estimation Strehl ratio, which only accounts for formulation

error [3, 6, 63, 64]. Until now, SRI performance metrics that account for more than

just formulation error have not been used, so the theoretical performance limitations

associated with SRI estimation error have not been fully investigated. In fact, despite

analytical predictions to the contrary, laboratory experiments implementing a single

DM commanded by an SRI, which inherently include all sources of estimation error,

have shown that the SRI’s performance shows some sensitivity to scintillation [18].

In an effort to advance understanding of the SRI’s performance limitations,

this chapter provides an analytical model for the shot-noise-induced error variance of

phase estimates computed from SRI measurements. The model is tested against both

Monte Carlo and wave-optics simulations and is shown to agree reasonably well over a

fairly wide range of atmospheric conditions. The model also predicts the dependence

of SRI estimation error on scintillation, which, as previously mentioned, has been

observed in laboratory experiments.

5.2 Derivation of SRI Photon-Noise-Induced Phase Error

The self-referencing interferometer (SRI) estimates an incident optical field from

interferograms created by interfering replicas of the incident field with phase-shifted

plane-wave reference beams. Figure 32 shows a diagram of a four-bin, spatial phase-

shifting SRI. The incident optical field is split between a signal leg and a reference

leg. Let β represent the fraction of power sent to the signal leg so that the signal field
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Figure 32: Four-bin phase-shifting SRI
Illustration adapted from Fig. 2(a) in Ref. [64]. The reference beam Uref is split and
recombined with four samples of the signal beam Usig, producing interfered fields U1

through U4. Interferograms I1 through I4 are the resulting irradiance patterns from
recording U1 through U4 with photodetector arrays.

can be written as

Usig(x, y) =
√

βUin(x, y). (136)

The portion of the input field sent to the reference leg is coupled into a single-mode

fiber with coupling efficiency ηc and recollimated to form a plane-wave reference beam

with ξ = ηc(1−β) times the power of the input field. The reference field is assumed to

have amplitude uniformly distributed throughout the pupil and zero phase. Therefore

the reference can be written as

Uref =





ξ

A

∫

A

∫

|Uin(x, y)|2dxdy





1/2

, (137)
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where A is the area of the exit pupil of the collimating lens. The reference is split

among four bins, each of which is shifted by θ = 0, π/2, π, and 3π/2 radians, respec-

tively, before being interfered with equal-amplitude replicas of the signal beam. The

phase-shift-dependent interferogram irradiance at the ith subaperture is given by

I(θ) =
1

4Ai

∫

Ai

∫

|Usig(x, y) + Uref e
−jθ|2dxdy

=
1

4
Iin







β + ξ + 2
√

βξ
1

Ai

∫

Ai

∫

cos[φ(x, y) + θ]dxdy







, (138)

where Ai is the area of the subaperture of interest and Iin is understood to be the

irradiance of the input beam integrated over the area corresponding to the ith sub-

aperture. The resulting interferograms are recorded by a photodector array. For

irradiance that is uniform over the extent of a subaperture and for the duration of an

integration time τ [s], the mean photocount is related to irradiance by

〈K〉 = ατAiI, (139)

where α is a factor that converts optical energy [J] to photons. This factor is given

by

α =
ηq
hc/λ

, (140)

where ηq ≤ 1 is the detector quantum efficiency, h is Planck’s constant [6.626196 ×
10−34 J·sec], c is the speed of light in vacuum [≈ 2.998 × 108 m/sec], and λ is the

optical wavelength [m].

To decrease hardware cost and complexity, the interfered beams of the four

separate bins are often optically directed to a single photodector array as illustrated

in Fig. 33 [63]. The average photocount of each bin of a single subaperture can be
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written as

〈K1〉 =
1

4
〈Kin〉

(

β + ξ + 2
√

βξf
)

〈K2〉 =
1

4
〈Kin〉

(

β + ξ − 2
√

βξg
)

〈K3〉 =
1

4
〈Kin〉

(

β + ξ − 2
√

βξf
)

〈K4〉 =
1

4
〈Kin〉

(

β + ξ + 2
√

βξg
)

, (141)

where 〈Kin〉 is the average number of photons per subaperture in the incident opti-

cal field, and the functions f and g represent the subaperture-averaged, amplitude-

normalized real and imaginary parts of the incident optical field. Explicitly, for a

subaperture with location and area given by Ai,

f ,
1

Ai

∫

Ai

∫ ℜ [Uin(x, y)]

|Uin(x, y)|
dxdy

=
1

Ai

∫

Ai

∫

cos[φ(x, y)]dxdy; (142)

g ,
1

Ai

∫

Ai

∫ ℑ [Uin(x, y)]

|Uin(x, y)|
dxdy

=
1

Ai

∫

Ai

∫

sin[φ(x, y)]dxdy. (143)

Because the SRI interferograms are proportional to the real and imaginary parts

of the incident optical field, the subaperture-averaged field can be estimated as

〈Û〉 =
√

βξ 〈Kin〉 [〈K1〉 − 〈K3〉+ j (〈K4〉 − 〈K2〉)] . (144)

The SRI field estimate has been shown to have a formulation error that depends

only on the ratio of subaperture size d to atmospheric coherence width r0 and is

invariant with the strength of scintillation for a fixed value of d/r0 [6]. However,
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Figure 34: SRI measurements on the complex plain

AO systems generally require phase estimates to correct optical turbulence with a

deformable mirror (DM). Estimating the phase requires the use of transcendental

functions, which complicates the noise analysis considerably. Following an approach

similar to that used by Servin et.al. in Sec. 5 of [44], an expression for noise-related

phase error is developed with the assistance of a diagram of the SRI field estimate in

the complex plane. This diagram, shown in Fig. 34, represents the SRI field estimate

〈Û〉 as a complex phasor with real and imaginary parts given by 〈K1〉 − 〈K3〉 and

〈K4〉 − 〈K2〉, respectively. Field estimates from SRI-interferogram photocounts are

randomly distributed around the average value of the field estimate with a standard

deviation σŨ . Since the four interferograms are recorded by different photodector

arrays, the photon noise between bins is independent, and the noise of the real and

imaginary parts of the estimate are equal. Therefore, σŨ can be represented as the

radius of a circle enclosing the region of greatest probability for the location of random

field estimates. In Fig. 34, the radius is shown as being equal to the error of the real

part of the phasor estimate σℜ. When the radius is directed so that it is tangent to
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the phasor estimate, the angular measurement error is given by

σφ̃ = tan−1

(

σℜ

|〈Û〉|

)

. (145)

Because we are only concerned with measurement error due to photon noise in

the interferograms, σℜ is understood to represent the deviation of the real part of the

field estimate due only to photon noise, which can be written as

σℜ = ∆K1 −∆K3, (146)

where ∆K1 , K1 − 〈K1〉 and ∆K3 , K3 − 〈K3〉 are the fluctuations of photocounts

about the means of the first and third bins due to photon noise and by definition have

means equal to zero. The variance of the real part of the SRI estimate due to photon

noise is given by

σ2
ℜ =

〈

[(∆K1 −∆K3)− (〈∆K1〉 − 〈∆K3〉)]2
〉

=
〈

[(K1 − 〈K1〉)− (K3 − 〈K3〉)]2
〉

=
〈

(K1 − 〈K1〉)2
〉

+
〈

(K3 − 〈K3〉)2
〉

− 2 〈(K1 − 〈K1〉)(K3 − 〈K3〉)〉

= σ2
K1

+ σ2
K3
. (147)

The phasor amplitude is given by

|〈Û〉| =
√

(〈K1〉 − 〈K3〉)2 + (〈K4〉 − 〈K2〉)2. (148)

Also, for Poisson-distributed photocounts, the photocount variance of each bin is

equal to its respective mean photocount. Therefore, by substituting Eqs. (147) and

(148) into Eq. (145) and using the definitions for the mean photocounts of the SRI
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bins given by Eq. (141), the residual-phase variance can be written as

σ2
φ̃

=

(

tan−1

{

[ 〈K1〉+ 〈K3〉
(〈K1〉 − 〈K3〉)2 + (〈K4〉 − 〈K2〉)2

]1/2
})2

=

(

tan−1

{

[

(β + ξ)

2〈Kin〉βξ(f 2 + g2)

]1/2
})2

.

In the absence of scintillation and for small enough subapertures, 〈Kin〉 and f

can be assumed to be deterministic quantities, and the small-angle approximation can

be used to reduce the expression for residual phase variance to

σ2
φ̃,small

=
β + ξ

2〈Kin〉βξ(f 2 + g2)
. (149)

However, if scintillation is present, or if the subapertures are large relative to r0, the

residual phase variance must be averaged over the statistics of irradiance and phase

fluctuations that were not removed by subtracting off the least-squares-unwrapped

noiseless phase. Toward this end, it is helpful to define f̃ and g̃ as the subaperture-

averaged, amplitude-normalized real and imaginary parts of the SRI field estimate

caused by photon noise, which can be expressed by substituting the SRI field-estimate

fluctuations Ũ for Uin in Eqs. (142) and (143). The average over f̃ 2 and g̃2 can then

be written as

〈f̃ 2 + g̃2〉 =

〈







1

Ai

∫

Ai

∫ ℜ
[

Ũ(x, y)
]

|Ũ(x, y)|
dxdy







2
〉

+

〈







1

Ai

∫

Ai

∫ ℑ
[

Ũ(x, y)
]

|Ũ(x, y)|
dxdy







2
〉

=
1

A2
i

∫

Ai

∫ ∫

Ai

∫

〈ℜ
[

Ũ(r1)
]

ℜ
[

Ũ(r2)
]

+ ℑ
[

Ũ(r1)
]

ℑ
[

Ũ(r2)
]

[

|Ũ(r1)|2|Ũ(r2)|2
]1/2

〉

dr1dr2,

(150)

where r1 = (x1, y1) and r2 = (x2, y2) are radial coordinate vectors inside the ith

subaperture. A bit of algebra applied to this expression reveals that 〈f̃ 2 + g̃2〉 is the
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subaperture-averaged coherence factor µ12 [see Eq. (33) in Sec. 2.2] of a homogeneous

and isotropic field [34].

Since Monte Carlo simulations showed that the residual phase variance is too

large to justify the small-angle approximation, the treatment of random irradiance

begins with the argument of the inverse tangent function in Eq. (149). As long as

the irradiance remains uniform over the extent of a subaperture, random irradiance

from subaperture-to-subaperture or between realizations does not increase the phase

variance as long as there is a large enough signal-to-noise ratio (SNR). This is easily

explained by referring to Fig. 34 and noting that an increase in irradiance, which

corresponds to an increase in the amplitude of the field-estimate phasor, does not

change the phase of the estimate. So, at high SNR’s where the radius of the noise

circle is sufficiently smaller than the amplitude of the estimate, any phase variance

due to random irradiance fluctuations is negligible. However, when random irradiance

fluctuations are coupled with photon noise at low light levels, the phase estimate does

suffer an increase in phase variance. An estimate for this effect begins by averaging

the argument of the inverse tangent function of Eq. (149) over the probability distri-

bution function (pdf) of the irradiance fluctuations. To simplify the analysis, we still

assume that irradiance fluctuations remain constant at least over the extent of a sub-

aperture and the duration of an integration time. Also, as discussed in Sec. 4.2, for the

subaperture sizes of interest in this work (d/r0 ≤ 1), scintillation aperture-averaging

effects are negligible, and the intensity is essentially constant over the extent of a

subaperture, i.e. subapertures behave as point receivers [1]. Therefore, the desired

average over the pdf of irradiance pI(I) can be written as

〈arg(σφ̃)〉Iin =

〈

[

(β + ξ)

2〈Kin〉βξµ12

]1/2
〉

Iin

=

[

(β + ξ)

2ατAiβξµ12

]1/2 ∫ ∞

0

1√
Iin
pI(I)dI. (151)
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For light with phase and amplitude fluctuations caused by atmospheric turbu-

lence, the classical irradiance fluctuations follow a log-normal distribution under the

first-order Rytov approximation [1]. The log-normal pdf of irradiance is given by

pI(I) =
1

Iσ
√
2π

exp

[−(ln I − µ)2

2σ2

]

, (152)

where µ and σ are parameters related to the irradiance mean 〈I〉 and variance σ2
I by

Eqs. (122) and (123) in Sec. 4.2. Also, as in Sec. 4.2, the log-normal-pdf parameters

µ and σ are expressed in terms of the scintillation index defined by Eq. (124). Sub-

stituting the log-normal pdf into Eq. (151) and evaluating the integral leads to the

irradiance-averaged argument of the residual phase variance

〈arg(σφ̃)〉Iin =

[

(β + ξ)

2ατAiβξµ12

]1/2
(σ̃2

I + 1)
3/8

√

〈Iin〉

=

[

(β + ξ)

2〈〈Kin〉I〉Kβξµ12

]1/2
(

σ̃2
I + 1

)3/8
, (153)

where 〈〈Kin〉I〉K indicates the irradiance-averaged average photocount of the sub-

aperture input. Substituting Eq. (153) into Eq. (149) provides the expression for the

shot-noise-induced residual phase variance that accounts for the effects of scintillation

σ2
φ̃
=

(

tan−1

{

[

(β + ξ)

2〈〈Kin〉I〉Kβξµ12

]1/2
(

σ̃2
I + 1

)3/8

})2

. (154)

Equation (154) is the key result of this chapter.

It is important to emphasize that this model started from the assumption of

lognormally-distibuted irradiance. However, other pdf’s of irradiance have been pro-

posed that may, in certain circumstances, describe the irradiance pdf better than the

lognormal distribution. The gamma-gamma pdf described in Ch. IV is a good exam-

ple. The choice of irradiance pdf could have a significant impact on the model for

phase-error variance for the same reasons it has a significant impact on centroid-error

variance as discussed in Sec. 4.2.1.
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5.3 Monte Carlo Simulations

Monte Carlo simulations are often used to study the impact of noise on WFS

measurements [32, 79]. The simulations referred to in this chapter as Monte Carlo

simulations did not involve wave-optics propagation. Instead, the simulated fields were

formed from separately-generated irradiance profiles and atmospheric phase screens.

A single value of r0 was used to generate a number of realizations of phase screens over

a range of subaperture sizes for three different sizes of the full-aperture. Optical fields

without scintillation were generated by forming complex fields with uniform amplitude

and phase given by the phase screens. Scintillation effects were implemented by using

a random number generator to produce lognormally-distributed irradiance profiles

with the desired average number of photons per subaperture as well as the desired

scintillation index. The simulated optical fields were then used to generate the four

SRI interferograms, which were averaged over the subapertures and then passed as

the parameter to a Poisson-random-variable generator to simulate photon noise. The

splitting parameters β and ξ were each set equal to 1/2. The field was estimated using

Eq. (144), and the phase estimate was computed using the four-quadrant, inverse

tangent of the imaginary and real parts of the field estimate. The phase estimate was

then unwrapped using a least-squares phase-unwrapping algorithm, and the aperture-

averaged phase (piston) was subtracted from each realization. The noise-induced

phase-estimation error was then computed by subtracting the piston-removed least-

squares-unwrapped phase φ of the subaperture-averaged input optical field from the

SRI phase estimate. The variance of the resulting residual phase was computed from

all subapertures in all realizations for each case of d/r0, D/r0, and input number of

photons per subaperture.

The Monte Carlo simulations showed that the residual phase variance is a func-

tion of subaperture size characterized by d/r0, full-aperture size D/r0, and the total

number of incident photons. Figures 35 and 36 show results that suggest a depen-

dence of the coherence factor µ12 on both d/r0 and D/r0. The figures plot the mean

subaperture photocounts of the SRI bins (a) and the variance of the subaperture
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Figure 35: SRI Monte Carlo photocount variance, 162 subapertures
Average bin photocounts and photon-noise variance computed from SRI Monte Carlo
simulations for 16 subapertures per full-aperture side length D and 3200 photons/-
subaperture.
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Figure 36: SRI Monte Carlo photocount variance, 322 subapertures
Average bin photocounts and photon-noise variance computed from SRI Monte Carlo
simulations for 32 subapertures per full-aperture side length D and 3200 photons/-
subaperture.
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photon noise (b). Figure 35 shows the results for the case of 16 subapertures and

3200 photons, and Fig. 36 shows the results for 32 subapertures and 3200 photons.

Comparing plots (a) with plots (b) in the figures verifies that the variances of ∆K

are equal to the mean photocounts and that the bin photocounts of the real and

imaginary parts sum to the appropriate values. These plots also show an interesting

trend in the photocounts of the first and third bins. Because the input phase has a

mean of zero, the expected value of f is 1. However, as d/r0 increases, the mean of

subaperture photocounts of the first bin decreases from its expected value of half the

total number of input photons per subaperture (when β = ξ = 1/2). Similarly, the

third bin increases from its expected value of zero. In both cases of 16 and 32 sub-

apertures across the pupil, the values of the bin photocounts asymptotically approach

800, which is one fourth the total number of input photons. This would be expected

if f were equal to zero and β = ξ [see Eq. (141)]. The diminishing impact of the

phase term in the first- and third-bin photocounts seems to indicate that the depth of

modulation is decreasing as d/r0 increases. The decrease in modulation depth shown

here is due to photon noise. Also, in Fig. 35 this decrease in modulation depth for

the case of 16 subapertures/D appears to be less significant than that suggested by

Fig. 36 for the case of 32 subapertures/D. Since the same subaperture size was used

for each of these cases, the full-aperture size D was different for each case. Therefore,

the modulation depth appears to also be a function of the full aperture size char-

acterized by D/r0. This may be due to the aperture-averaged phase variance that

increases as (D/r0)
5/3 [71].

The impact of subaperture size on residual-phase-variance, or sampling error,

from the Monte Carlo simulations is shown in Figs. 37 and 38 for the cases of 50 and

200 photons per subaperture, respectively. First, these results show that at larger

values of d/r0 the residual phase variance becomes too large to justify the small angle

approximation. However, substituting the square root of Eq. (149) as the argument

of the inverse tangent function in Eq. (149) results in a reasonably close fit to the

data when an appropriate function is used for µ12. The simulations also show that the
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Figure 37: SRI sampling error (Monte Carlo), 50 phot./subap.
Photon-noise-induced phase-error variance computed from SRI Monte Carlo simula-
tions for 50 photons/subaperture.

residual phase variance depends on the number of subapertures, which corresponds

to a larger full-aperture size characterized by D/r0.

Therefore, an expression for the coherence factor was formed by multiplying

the usual expression for the coherence factor exp
[

−3.44(d/r0)
5/3
]

by a factor that

includes the D/r0 dependence observed in the Monte Carlo data. The expression for

the coherence factor found to provide the closest match of the residual-phase-variance

model to the Monte Carlo simulation results is

µ12 = exp

[

−3.44

(

d

r0

)5/3
]

(

0.1578 · D
r0

)−5/3

. (155)

The constant factor 0.1578 was determined from surface fits to the phase variance

computed fromMonte Carlo simulations over a range of parameters. Table 1 shows the

values of the surface-fit parameter a for each case of the number of input photons per

subaperture. The surfaces were fit to the Monte Carlo residual-phase-variance values

plotted as a function of d/r0 and D/r0. Eight equally-spaced values of d/r0 ranging

from 1/8 to 1 were used, and the values used for the number of subapertures/D were
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Figure 38: SRI sampling error (Monte Carlo), 200 phot./subap.
Photon-noise-induced phase variance computed from SRI Monte Carlo simulations
for 200 photons/subaperture.

Table 1: Residual-Phase-Variance Fitting Parameter

* 50 photons 200 photons 800 photons 3200 photons

a 0.1620 0.1553 0.1704 0.2005
CI (0.1497,0.1743) (0.1444,0.1661) (0.1577,0.1831) (0.1796,0.2214)
r2 0.9683 0.9510 0.9090 0.7467

rmse 0.11620 0.08675 0.06458 0.05271
∗a is the fitting parameter, CI is the 95% confidence-interval bounds, r2 is the coefficient of deter-
mination, and rmse is the root-mean-square error of the fit.

12, 16, 24, 32, and 48. The value 0.1578 for the constant factor in Eq. (155) is the offset

(y-intercept) of a least-squares fit of a line to the values of the surface-fit parameter a

shown in Table 1. While there appears to be a slight dependence of a on the number

of photons, the slope of the fit line was 1.3× 10−5, so this dependence was neglected.

This apparent dependence most likely has more to do with the fact that Eq. (155)

provides a poorer fit to the data as the number of photons per subaperture increases,

which is evidenced by the corresponding decrease in the coefficient of determination

r2, also shown in the table.
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Figure 39: SRI phase-error variance (Monte Carlo), 50 photons, d = D/16
Photon-noise-induced phase variance as a function of scintillation strength from SRI
Monte Carlo simulations for 16 subapertures/D 50 photons/subaperture.

The model for the residual-phase variance was computed by substituting Eq. (155)

for µ12 in Eq. (154). Plots of the residual phase variance are shown in Figs. 39 through

42. These plots show the variance as a function of scintillation index since the scintil-

lated irradiance profiles were generated directly from arbitrarily-chosen values of the

scintillation index. Also, the values of scintillation index used in the Monte Carlo sim-

ulations correspond to values of log-amplitude variance ranging from 0 to 0.25, which

represents the weak-scintillation regime [1, 71]. Figures 39 and 40 show the phase-

error variance from the Monte Carlo simulations for 16×16 subapertures with 50 and

200 photons per subaperture, respectively. Figures 41 and 42 show the phase-error

variance for 50 and 200 photons with 32 × 32 subapertures. The model provides a

reasonable (and very useful) prediction for the residual phase variance in the presence

of scintillation that can be modeled as log-normally distributed subaperture-photon

levels. Figures 39 and 41 show that the agreement is particularly close for low illumi-

nation.
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Figure 40: SRI phase-error variance (Monte Carlo), 200 photons, d = D/16
Photon-noise-induced phase variance as a function of scintillation strength from SRI
Monte Carlo simulations for 16 subapertures/D and 200 photons/subaperture.
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Figure 41: SRI phase-error variance (Monte Carlo), 50 photons, d = D/32
Photon-noise-induced phase variance as a function of scintillation strength from SRI
Monte Carlo simulations for 32 subapertures/D and 50 photons/subaperture.
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Figure 42: SRI phase-error variance (Monte Carlo), 200 photons, d = D/32
Photon-noise-induced phase variance as a function of scintillation strength from SRI
Monte Carlo simulations for 32 subapertures/D and 200 photons/subaperture.

5.4 Testing the Model against Wave-Optics Simulations

Wave-optics simulations provide a slightly better test of how well a model rep-

resents physical reality. Also, they have been preferred for testing WFS performance

when beacons are scintillated by propagation through volume-distributed atmospheric

turbulence [3–5]. To test the model presented here, optical fields were generated by

numerically propagating an on-axis point source through 40 atmospheric realizations,

each modeled by ten Kolmogorov phase screens. The phase screens were evenly spaced

throughout the propagation path and designed to provide a total-path, spherical-wave

atmospheric coherence width of r0 = 7.5cm. Since the same simulated optical fields

were used here as for the centroid-error study, further details on the wave-optics simu-

lations can be found in Sec. 4.3. The resulting optical fields were then sent to the same

SRI model used for the Monte Carlo simulations, and the residual phase variance was

computed in the same way described in Sec. 5.3.

The model was computed in the same way as described for the Monte Carlo

simulations, except that σ̃2
I was computed according to its definition in Eq. (124)
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Figure 43: SRI phase-error variance (wave-optics), d = D/16, d/r0 = 1
SRI photon-noise-induced phase variance computed from wave-optics simulations
plotted as a function of scintillation strength characterized by Rytov number.
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Figure 44: SRI phase-error variance (wave-optics), 50 photons, d = D/16
SRI photon-noise-induced phase variance computed from wave-optics simulations
plotted as a function of scintillation strength characterized by Rytov number.
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Figure 45: SRI phase-error variance (wave-optics), 200 photons, d = D/16
SRI photon-noise-induced phase variance computed from wave-optics simulations
plotted as a function of scintillation strength characterized by Rytov number.

from the variance and squared mean of the irradiance of the 40 realizations of 256×
256 input fields. Figure 43 shows the residual phase variance from the wave-optics

simulations with d/r0 = 1. The model matches the simulation results reasonably well

for this case. However, as shown in Figs. 44 and 45, at values of d/r0 < 1 the model

underestimates the residual phase variance at Rytov numbers greater than about 0.2.

The model for residual phase variance in scintillation expressed by Eq. (154) was

derived by assuming lognormally-distributed irradiance. The results in Figs. 44 and

45 seem to suggest that the model actually applies best when the scintillation has been

averaged over subapertures equal in size to r0. This is consistent with observations in

Ch. IV regarding the intensity pdf’s of the wave-optics simulation data. Figures 24

and 25 in Sec. 4.3.1 show that the lognormal pdf fits the intensity pdf of the simulation

data less as subaperture size decreases. As discussed in Sec. 4.2.1, the assumed pdf

has a significant impact on the integrand in the error-variance models that account
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for intensity fluctuations by averaging the conditional error variance over the intensity

pdf.

5.5 Conclusion

A model for the shot-noise-induced residual phase variance has been derived

that accounts for the effects of scintillation and, for the first time, predicts the ex-

perimentally observed dependence of SRI measurements on scintillation strength [63].

Monte Carlo simulations were used to evaluate and refine the model by accounting for

complicated effects of subaperture and full-aperture sizes. The resulting model was

then tested against wave-optics simulations, which showed reasonable agreement be-

tween the model and the simulations. This model accounts for phase-error variance in

a four-bin, spatial-phase-shifting SRI due to photon noise and lognormally-distributed

irradiance fluctuations. The method used here could lead to other models for phase-

error variance for irradiance fluctuations that are not lognormally distributed, but

they may require numerical integration. This model does not account for phase and

irradiance fluctuations within a subaperture, which may account for some of the dis-

crepancies between the model and the simulation. Additionally, the simulations did

not realistically model fiber coupling in the reference leg of the SRI, and the model

for residual phase variance did not attempt to account for errors associated with fiber

coupling beyond the inclusion of the splitting parameters β and ξ. These issues were

left as future work so that the present model could be used to design a hybrid WFS

using the SRI and a SH WFS.
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VI. Hybrid Wavefront Sensor

6.1 Introduction

The Shack-Hartmann wavefront sensor and the self-referencing interferometer

are complementary sensors used to measure the phase of optical fields in adaptive-

optics control systems. AO systems use the phase measurements from a WFS to

command a deformable mirror for correcting wavefront distortions caused by system

aberrations or random distortions such as the optical effects of atmospheric turbu-

lence. The unique and complementary characteristics of the SH and SRI WFS’s

motivated this study of the potential for improving WFS performance by combining

them into a hybrid WFS.

The Shack-Hartmann sensor estimates local wavefront slopes from intensity

measurements at the focal plane of a lenslet array. The slope measurements can

then be least-squares reconstructed into phase estimates for effective control of a DM

in an AO system as long as there is sufficient signal-to-noise ratio and small enough

subapertures to adequately sample the turbulence. However, scintillated optical fields

can cause problems for SH-WFS slope measurements when SNR is low. In fact, the

SH WFS’s formulation error can be significant in strong scintillation due to low sig-

nal levels in the vicinity of branch points [3, 5, 29]. Despite its weaknesses in strong

scintillation, the SH WFS has actually outperformed other WFS’s in low scintilla-

tion strength [3]. Also, because the SH WFS uses focal-plane measurements and has

low-resolution imaging capability, it is possible, within certain limitations, to form

phase estimates even when the beacon has finite extent. Furthermore, the SH WFS’s

focal-plane imaging capability also enables it to use broadband sources as beacons.

Finally, the SH WFS lends itself naturally to estimation of the least-squares phase

of atmospheric turbulence because its measurements can be directly related to phase

differences across its subapertures (i.e. wavefront slope).

The SRI uses phase-shifting interferometry to estimate the optical field in the

pupil plane. These pupil-plane measurements provide estimates for the principal-

value (a.k.a. modulo-2π or wrapped) phase that generally must be unwrapped to
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command the actuators of a continuous-facesheet DM. Formulation error in the SRI

has been shown to be insensitive to scintillation, which makes it a natural choice for

improving AO performance in strong scintillation [3,6]. Wave-optics results reported

by Barchers et al. confirmed this prediction and showed that the SRI outperformed a

SH WFS in strong scintillation even when a branch-point-tolerant phase reconstructor

was used for the SH measurements [3,6]. However, the same results also showed that

in weak scintillation the SH WFS outperformed the SRI. Also, since the SRI relies on

interferometry, it requires a narrow-band, point-source beacon to operate effectively

and may be signifciantly challenged by extended beacons. Finally, because SRI phase

estimates must be unwrapped to control a continuous-facesheet DM, least-squares

phase reconstruction is required just as it is for the SH WFS.

Because of their complementary strengths and weaknesses, the SH and SRI sen-

sors are reasonable choices for developing a hybrid WFS that can deal with a range

of beacon characteristics and atmospheric conditions. Measurements from the SH

and SRI WFS’s also fit naturally into a least-squares and principal-value (LSPV)

phase-unwrapping approach [52, 86]. This chapter proposes, models, and simulates

a hybrid WFS that combines SH and SRI measurements to form phase estimates in

a way that employs the strengths and mitigates the weaknesses of each individual

WFS. The approach is based on semi-analytic models for the variances of SH and

SRI phase measurements. These models have been shown in Chapters IV and V to

agree reasonably well with wave-optics simulations. Under the assumption that lower

phase variance should lead to better phase estimation and AO compensation, the

models serve as tools for making critical design decisions that ensure optimum per-

formance of each WFS on its own and suggest ways to combine them for further per-

formance improvements. Based on the models of individual WFS phase variances, a

maximum-likelihood, weighted-average hybrid WFS is developed that performs better

at estimating the least-squares phase than a comparable stand-alone SRI in open-loop

wave-optics simulations using a point-source beacon propagated through atmospheric

turbulence. Further, the hybrid WFS is also shown to provide benefits over a com-

139



parable stand-alone SRI even when performing LSPV phase unwrapping to improve

performance in the presence of branch points.

6.2 SRI Phase Variance Model

From Ch. V, a model for photon-noise-induced phase-error variance σ2
sri com-

puted from field measurements made by a four-bin phase-shifting self-referencing in-

terferometer (SRI) is given by

σ2
sri =

(

tan−1

{

[

(β + ξ)

2Ksriβξµ12

]1/2
(

σ̃2
I + 1

)3/8

})2

≈ (β + ξ)

2Ksriβξµ12

(

σ̃2
I + 1

)3/4
, (156)

where Ksri is the mean number of available photons per subaperture, β is the fraction

of power split to the signal leg of the SRI, ξ is the fraction of power split to the reference

leg, µ12 is the spatial coherence factor of the beacon, and σ̃
2
I is the scintillation index.

The scintillation index is defined as

σ̃2
I ,

σ2
I

〈I〉2 , (157)

where σ2
I is the irradiance variance and 〈I〉 is the mean irradiance. Also, the fraction

of power split to the reference leg can be expressed in terms of the losses due to

imperfect coupling efficiency ηc and the light split to the signal leg as

ξ , ηc(1− β). (158)
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Furthermore, the fringe visibility, or modulation depth, of the SRI interferograms can

be expressed as (p.182 in [34])

V =
2
√
KsKr

Ks +Kr

µ12

=
2
√
βξ

β + ξ
µ12, (159)

where Ks = βKsri is the mean number of photons per subaperture sent to the SRI’s

signal leg, and Kr = ξKsri is the number of photons per subaperture sent to the

reference leg. It follows that the SRI phase variance can also be expressed in terms

of the fringe visibility as

σ2
sri =

1

Ksri

√
βξ V

(

σ̃2
I + 1

)3/4
. (160)

The best fit to phase variance computed from Monte Carlo simulation data resulted

when the fringe visibility was modeled as

V =
2
√
βξ

β + ξ
exp

[

−3.44

(

d

r0

)5/3
]

(

0.1578 · D
r0

)−5/3

. (161)

This resulted in a model for phase variance that agreeed well with wave-optics simula-

tions over a range of atmospheric conditions characterized by d/r0 and Rytov number.

6.3 Shack-Hartmann Phase Variance Model

From Ch. IV, a model for the variance σ2
sh of phase estimates reconstructed from

Shack-Hartmann-centroid-based slope measurements is given by

σ2
sh = 2

(2π)2

Ksh

N2

∑

i=1

x2i fi
(

σ̃2
I + 1

)

, (162)

where Ksh is the mean number of photons incident on each Shack-Hartmann lenslet

(or subaperture), fi is the fraction of light incident on the ith pixel of a subaperture’s
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detector array, N is the number of pixels across the detector array, and σ̃2
I is the

scintillation index defined in Eq. (157). The expression in Eq. (162) requires the

subaperture pixel coordinates xi to be expressed in normalized angular units where

the factor of normalization is the diffraction angle λ/d [rad]. Equation (162) also

assumes a linear calibration curve with a slope of one, and sets the reconstructor

propagation error to unity, which is a close approximation for a large number of

actuators and likely overestimates propagation error for tilt-removed phase [28, 50].

The Shack-Hartmann phase variance can be computed by numerically integrat-

ing over an assumed spot function, i.e. fi can be written as

fi =

∫

Ai

∫

f(x, y, w)dxdy, (163)

where Ai is the solid angle of the ith pixel, f(x, y, w) is the assumed spot function, x

and y are the coordinates inside a subaperture, and w is the width of the spot. For

square subapertures, the spot function is given by

f(x, y, w) =
1

w2
sinc2

( x

w

)

sinc2
( y

w

)

, (164)

where sinc(x) , sin(πx)/(πx). To account for spreading of the spot due to atmo-

spheric turbulence, an effective spot width can be defined in terms of the diffraction-

limited spot width wDL, the optical transfer function (OTF) of the lenslet Hopt, and

the OTF of the atmosphere Hatm as

weff = wDL ×









∞
∫

−∞

∫

Hopt(fX , fY )dfXdfY

∞
∫

−∞

∫

Hopt(fX , fY )Hatm(fX , fY )dfXdfY









1/2

, (165)
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where fX and fY are spatial-frequency coordinates. For a square lenslet, the one-

dimensional OTF of the optics is given by

Hopt(fX) = Λ

(

fX
2f0

)

, (166)

where 2f0 = d/(λfℓ) is the spatial cutoff frequency [35]. The triangle function Λ is

defined as

Λ(x) =







1− |x| |x| ≤ 1

0 otherwise.
(167)

The short-exposure OTF of the atmosphere is defined as

Hatm(ρ) = exp

{

−3.44

(

ρ

r0

)5/3 [

1− a
(ρ

d

)1/3
]

}

, (168)

where ρ = (f 2
X+f 2

Y )
1/2 is a radial spatial frequency coordinate, and a is a scintillation

parameter; a = 1 in the absence of scintillation, and a = 1/2 when scintillation is

present [34]. Given a set of values for d, r0, and a, the effective spot width weff can

be computed by substituting Eqs. (166) and (168) into Eq. (165) and evaluating the

integrals numerically. This effective spot width is then used in numerically evaluat-

ing the integration of the spot function over the subaperture pixels to compute the

variance of phase estimates reconstructed from Shack-Hartmann slope measurements.

The model of slope variances, which is simply Eq. (162) divided by 2(2π)2, agreed well

with wave-optics simulations over a range of atmospheric conditions characterized by

d/r0 and Rytov number.

6.4 Hybrid WFS Architecture

Using two WFS’s requires splitting of the available light, which must be done

optimally to avoid excessive variance in the measurements that would negate any

benefits of a hybrid approach. The choice of subaperture size for each WFS is the

first step in determining the optimal splitting, since this controls the relative num-
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ber of photons available for each sensor’s measurements. The models described in

Secs. 6.2 and 6.3 provide a useful means of determining optimum subaperture sizes.

Normalizing the error models by (d/r0)
2 aids the comparative analysis by enforcing

the condition that each WFS works with a fixed number of photons within an area

equal to the square of the atmospheric coherence area r20. Figure 46 shows normalized

phase variances from the models given by Eqs. (160) and (162) without scintillation

for values of d/r0 between 0.25 and 1. For each phase-variance model, r0 was set to

7.5cm, the full-aperture size was set to 16.5 × r0, and the SH WFS had two pixels

per diffraction angle and eight pixels across each subaperture’s detector array, and

the phase variances from the models were then normalized by (d/r0)
2. Figure 46 (a)

shows the normalized models for 400 photons per subaperture and 10% SRI fiber-

coupling efficiency, and Fig. 46 (b) shows the results for 800 photons per subaperture

and 40% coupling efficiency. The case used for the plot in Fig. 46 (a) represents bad

but realistic conditions for the SRI, while the case used for (b) uses a more optimistic

value for coupling efficiency but still a quite low level of light [75]. These plots suggest

that the SH WFS should provide the most benefit in a hybrid WFS when the SRI’s

coupling efficiency becomes very low. Also, as the input number of photons increases,

the performance of both WFS’s improve while maintaining the same performance

relative to one another.

The minimum phase variance predicted by the models within the range 0 ≤
d/r0 ≤ 1 occurs when the SRI subapertures have side lengths dsri ≈ 0.5×r0 and when

the SH subapertures are as large as possible. AO systems using SH WFS’s can achieve

closed-loop Strehl ratios of about 0.75 with as few as 500 photons per subaperture

when d/r0 = 1, but their performance degrades steadily as d/r0 increases due to

undersampling of the incident field [90]. Therefore, the hybrid WFS was designed to

have dsh/r0 = 1 and dsri/r0 = 1/2. The plots in Fig. 46 also show that, especially in

low-light conditions and low SRI-coupling efficiencies, the SH phase variance tends to

be significantly lower than the SRI phase variance. Therefore, larger SH subapertures
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Figure 46: SRI and SH phase variances from models

also require less light to be split from the SRI to achieve equal phase variances between

the two WFS’s.

Besides allowing for less light to be split from the SRI in a hybrid architecture,

larger SH subapertures decrease the time required to read out the SH-spot irradi-

ances from the detector array, which is typically the longest delay in the wavefront-

estimation process [66]. When the SH subapertures are designed to have two pixels

per diffraction-limited angle, eight pixels across the subaperture generally provide

plenty of room to avoid significant truncation errors or crosstalk [41]. With eight

pixels across SH subapertures that have twice the side length of the SRI subapertures

(and therefore half the number of subapertures across the pupil), the same number of
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pixels must be read from both the SH and SRI sensors (recall that each SRI subaper-

ture requires four pixels in the detector array), which can be done simultaneously.

Therefore, the proposed architecture does not operate any slower than a compara-

ble stand-alone SRI. This characteristic would be beneficial if, for example, the SH

measurements required less frequent temporal sampling. Since the models make no as-

sumptions about integration times, longer integration time in the SH would translate

to less light being split from the SRI, which should improve the hybrid’s performance

even more. Therefore, future work in temporal analysis of the hybrid WFS could lead

to additional performance gains.

Combining phase estimates from SRI measurements and SH measurements re-

quires some discussion of the alignment between WFS subapertures and DM actu-

ators, especially for a hybrid WFS that uses two sensors with different subaperture

sizes. The SRI alignment geometry is conceptually simple; DM actuators are aligned

with the centers of the SRI subapertures, which is where SRI field estimates are

assumed to form subaperture-averages of the incident optical field [3, 6]. Shack-

Hartmann alignment geometries are slightly more complicated, however, since the

actuator locations must be aligned with the SH subapertures based on assumptions

about the relationships between the phase of the incident field and the locations of

the SH slope measurements. Different geometries can be used to relate SH slope mea-

surements to locations of phase estimates (or actuators). The popular Fried geometry

aligns the actuators with the corners of the SH subapertures [28]. The Southwell ge-

ometry locates the actuators at the centers of the SH subapertures, while the Hudgin

geometry estimates the phase along the edges of the subapertures [40, 76].

The multiple geometries can be useful in forming better SH phase estimates at

a denser grid of actuators than can be done simply by interpolating estimates from

a single geometry. Since the Southwell geometry actually averages adjacent SH slope

measurements and reconstructs phase estimates from these averaged slopes using a

Hudgin geometry, it is a natural complement to the phase reconstructed using the

Fried geometry. Figure 47 shows the Fried and Southwell geometries overlaid with
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Figure 47: SH slope-reconstruction geometries
Arrows show locations of slope measurements, ×’s show locations of averages of ad-
jacent slope measurements. Black lines and circles show the SH subapertures and
actuator locations for the Fried geometry. Gray lines and circles show the virtual
subapertures and actuator locations for the Southwell geometry.

one another. The black arrows show the locations of SH slope measurements, and the

black ×’s show the locations of the averages of adjacent slope measurements. Black

grid lines and circles show the SH subapertures and actuator locations for the Fried

geometry, and gray grid lines and circles show the virtual subapertures and actuator

locations for the Southwell geometry.

Figure 48 shows the proposed hybrid architecture with two SRI-subaperture

side lengths per SH-subaperture side length, where the center of every other SRI

subaperture is aligned with the corner of a SH subaperture. The black lines show

the outline of the SRI subapertures, the gray lines show the SH subapertures, the

circles indicate the locations of SRI estimates (and DM actuators), the dots indicate

the locations of SH estimates using the Fried geometry, and the plus signs show the

locations of the SH estimates using the Southwell geometry. In this architecture, the

hybrid WFS computes SH phase estimates by linearly interpolating phase estimates

from both the Fried and Southwell geometries and then averages the resulting two
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Figure 48: Hybrid-WFS alignment geometry
Black lines show outline of SRI subapertures, gray lines show SH subapertures, circles
show locations of SRI phase estimates, dots (·) show locations of SH phase estimates
using the Fried reconstruction geometry, and plus signs (+) show locations of SH
phase estimates using the Southwell reconstruction geometry.

grids of phase estimates. This average of SH phase estimates is then combined with

the SRI phase estimates using a weighted-average approach as described in Sec. 6.5

below.

6.5 Maximum-Likelihood, Weighted-Average Hybrid WFS

A successful hybrid architecture that combines multiple WFS’s should favor

the WFS that is best-suited to provide phase estimates for the beacon and atmo-

spheric conditions at hand and shift phase-estimating responsibility to the other

WFS(s) as conditions change. A weighted-average, maximum-likelihood estimate

(MLE) provides this type of control and is applicable to SH and SRI phase mea-

surements with noise that is well-approximated as having a Gaussian probability

density function (pdf). Although the phase-variance models of Secs. 6.2 and 6.3 were

developed from the assumption of Poisson-distributed photocount noise, the opera-

tions used to produce LS-reconstructed/unwrapped phase estimates justify a Gaus-
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sian pdf based on the central-limit theorem. The central-limit theorem applies to

LS-reconstructed/unwrapped phase estimates since they are essentially the average

of phase estimates resulting from all possible integration paths over the computed

phase differences [29].

Given two noisy measurements φ1 and φ2 with equal means φ0, but different

variances σ2
1 and σ2

2 due to noise from two different sensors, the maximum-likelihood

estimate for normally distributed noise is a weighted average. To determine the

weighting that provides the MLE, the noise is assumed independent between phase

measurements and the joint pdf is formed as the product of the two Gaussian pdf’s

given by

pΦ(φ1) =
1

σ1
√
2π

exp

[

−(φ1 − φ0)
2

2σ2
1

]

pΦ(φ2) =
1

σ2
√
2π

exp

[

−(φ2 − φ0)
2

2σ2
2

]

. (169)

The joint probability of observing φ1 and φ2 given an input φ0 is then given by

f(φ1, φ2|φ0) = pΦ(φ1)pΦ(φ2)

=
1

2πσ1σ2
exp

{

−
[

(φ1 − φ0)
2

2σ2
1

+
(φ2 − φ0)

2

2σ2
2

]}

. (170)

This joint pdf provides an expression for the likelihood that the input is actually equal

to φ0 given observed measurements of φ1 and φ2, which leads to the log-likelihood

function given by

ℓ(φ0|φ1, φ2) = ln [f(φ1, φ2|φ0)] . (171)

Setting dℓ(φ0|φ1, φ2)/dφ0 = 0 and solving for φ0 leads to the MLE for φ0 given noisy

measurements φ1 and φ2

φ̂ =
σ2
2

σ2
1 + σ2

2

φ1 +
σ2
1

σ2
1 + σ2

2

φ2. (172)
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This analysis started from the assumption that the phase measurements of each

WFS were unbiased. If, however, either or both of the WFS’s had some measurable

scaling or bias in the phase estimates, the preceding analysis could be easily adapted

to account for it by including scaling and bias terms that operate on the mean phase

φ0 in the log-likelihood function. The resulting weights would then include the scaling

and bias terms, and the estimate would still be unbiased as long as the scaling and

bias were accurately characterized. However, for this study, the SH and SRI phase

estimates are assumed to be unbiased, which should generally be true for well-designed

sensors. The salient point here is that the weighted-average, maximum-likelihood

hybrid phase estimate given by Eq. (172) is unbiased, even if the individual-WFS

measurements are not. Because the hybrid phase estimate is an unbiased estimator,

the Cramer-Rao lower bound (CRLB) on its variance is given by [7]

Var
(

φ̂− φ0

)

≥ 1
〈

[

∂
∂φ0

ℓ(φ0|φ1, φ2)
]2
〉

=

(

1

σ2
1

+
1

σ2
2

)−1

. (173)

Applying the results of the preceding analysis to phase measurements from the

SRI and SH WFS’s, a hybrid WFS can be formed as the weighted average of the SRI

phase esimate φ̂sri and the SH phase estimate φ̂sh as

φ̂ = aφ̂sri + bφ̂sh, (174)

where a and b are the weights of the phase estimates from the SRI and SH WFS’s,

respectively. The phase-error variance σ2
φ̂
of the hybrid WFS’s phase estimate is given

by

σ2
φ̂

= a2σ2
sri + b2σ2

sh

=

(

σ2
sh

σ2
sri + σ2

sh

)2

σ2
sri +

(

σ2
sri

σ2
sri + σ2

sh

)2

σ2
sh, (175)
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where the weights a and b have been defined using Eq. (172) with σ2
1 = σ2

sri and

σ2
2 = σ2

sh. With a little algebraic manipulation, Eq. (175) reduces exactly to Eq. (173).

Therefore, the hybrid WFS’s phase variance achieves the CRLB. Note that for two

component WFS’s with equal variances, the variance of the hybrid WFS’s estimate is

half that of either stand-alone WFS’s. Also, for complementary WFS’s, it is conceiv-

able that conditions that degrade one WFS’s performance will improve the perfor-

mance of the other WFS. When the hybrid WFS is composed of two complementary

WFS’s, the variance of its measurements should be very stable.

Substituting the models from Eqs. (160) and (162) into Eq. (175) provides a

model that facilitates optimal design of the weighted-average hybrid WFS. Because

a and b are defined such that a + b = 1, both weights for the maximum-likelihood

estimate can be quickly computed from only one of the weights, say a, which is a

function of the ratio of the phase-variance models given by Eqs. (160) and (162). The

resulting expression is simplified somewhat by first defining the number of photons

available to the SRI and SH WFS’s in terms of the number of input photons Kin, a

splitting parameter γ that is defined as the fraction of input optical power sent to

the SRI, and the ratio of SH-subaperture side length to SRI-subaperture side length

rd = dsh/dsri. The number of photons sent to the SRI and SH WFS’s can then be

related to the input photons by

Ksri = γKin

(

d

r0

)2

Ksh = r2d(1− γ)Kin

(

d

r0

)2

, (176)

where d is the actuator spacing of the deformable mirror used to apply the wavefront

correction, which is equal to the side length of the SRI subaperture dsri. The ratio rd

allows investigation of the impact of SH subapertures that are potentially larger than

the SRI subapertures, which could result in more efficient use of the input light. The

number of input photons Kin is defined as the number of photons in an area with side

length r0 incident on the receive aperture of the hybrid WFS. Therefore, assuming
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β = 1/2 and expressing the amount of power in the reference leg of the hybrid’s SRI

in terms of the coupling efficiency, the phase variances of the hybrid’s SRI and SH

WFS’s can be expressed as

σ2
sri =

2

γ(d/r0)2Kin
√
ηc V

(σ̃2
I + 1)3/4 (177)

σ2
sh = 2

(2π)2

r2d(1− γ)(d/r0)2Kin

U(σ̃2
I + 1). (178)

where U ,
∑N2

i=1 x
2
i fi. It is important to recognize that the numerical integrations

used to compute the SH phase variance are performed over the area defined by the

SH subaperture side length dsh. Therefore, although actuator spacing d (or equiva-

lently SRI subaperture size dsri) is used to compute Ksh, the numerical integrations

to determine σ2
sh from Eq. (162) must be done over an area defined by (d · rd)2. Also,

for the computation of the normalized angular SH subaperture-pixel coordinate xi in

Eq. (162), the diffraction angle is defined by λ/dsh = λ/(d · rd). The weighting on

the SRI phase estimate that results in a maximum-likelihood estimate can then be

expressed as

a =
σ2
sh

σ2
sri + σ2

sh

=

(

1 +
σ2
sri

σ2
sh

)−1

=

[

1 + r2d

(

1− γ

γ

)(

1 + ηc
ηc

)

(σ̃2
I + 1)−1/4

VU

]−1

. (179)

Figure 49 shows a surface plot of the SRI weighting as a function of scintillation

index and coupling efficiency for 3200 photons/r20, γ = 0.5, and rd = 2. This plot

shows the MLE weighting favors the SRI as the strength of scintillation increases,

which is desirable since previous studies have shown that the SRI is less sensitive

to scintillation than the Shack-Hartmann [3]. The plot also shows that the MLE

weighting is a much stronger function of coupling efficiency, and as the SRI’s coupling
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Figure 49: Weighting of SRI estimate
Computed for 50% of the power sent to each when 3200 photons/r20 were split between
both WFS’s.

efficiency decreases, the MLE more strongly favors the Shack-Hartmann WFS, which

is completely independent of the SRI’s coupling efficiency. In closed-loop operation,

this action should help to maximize the SRI’s coupling efficiency since a decrease

in residual phase variance should result in higher Strehl ratios and therefore greater

coupling efficiency.

The expression for the hybrid’s phase variance given by Eq. (175) reduces to the

expression for the CRLB in Eq. (173). Therefore, the hybrid phase estimate is efficient

because it achieves equality in the CRLB, which means that it results in a minimum-

variance estimate for WFS measurements with given variances. However, the models

from Secs. 6.2 and 6.3 show that the variances of the individual WFS’s in the hybrid

are a function of critical design parameters. The phase variance given by Eq. (175),

which can be evaluated numerically, helps choose optimal design parameters. This

approach was used to determine the optimal architecture discussed in Sec. 6.4. The
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models of phase variance can also help determine the value of the splitting parameter

γ. Figure 50 shows a plot of the hybrid phase variance versus γ for coupling efficiencies

of 20%, 40%, and 80%. These values represent a range of coupling efficiencies from

optimistic to ideal [61, 75]. The maximum achievable coupling efficiency for an ideal

point source in perfect seeing conditions is ≈80%, but coupling efficiency decreases

rapidly with increasing D/r0, becoming greater than 20% only when D/r0 > 4 and

rapid image stabilization is used [75]. The model for the hybrid WFS’s phase-error

variance shows that as coupling efficiency decreases, more light should be split to the

SRI to offset the loss of photons. This suggests that in cases of low coupling efficiency,

the best results for the hybrid WFS in the proposed architecture should be achieved

when most of the light is split to the SRI.

For the plots in Fig. 50, the weighting on the SRI estimate was set to a = 1/2,

the input number of photons per r20 was set to 3200, and the SH-subaperture side

length was twice that of the SRI, which was selected to control two actuators/r0, i.e.

d/r0 = dsri/r0 = 1/2. The black ×-markers identify the locations of the minimum

phase variance. Substituting the values of γ that resulted in minimum phase variances

along with the other applicable design parameters into Eq. (179) then provides the

weighting required to perform the MLE.

The superior performance of the SRI in strong scintillation comes from the fact

that it directly produces principal-value phase measurements. However, unwrapping

SRI phase measurements still requires least-squares reconstruction of phase differ-

ences. In strong scintillation, the non-least-squares component contributes signifi-

cantly to the atmospheric phase [29]. The SRI’s ability to measure the non-least-

squares phase explains its superior performance relative to the SH WFS in strong

scintillation. However, because the SH WFS has been shown to outperform the SRI

in weak scintillation, it may be that the SH is better than the SRI at estimating

the least-squares phase. Combining the two WFS’s into a hybrid in the maximum-

likelihood, weighted-average approach described here provides a means of shifting

wavefront-sensing responsibilities to the WFS best suited for whatever scintillation
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Figure 50: Choosing optimum splitting parameter γ

conditions are encountered by the AO system. The following section provides results

of wave-optics tests comparing the least-squares phase-estimating performance of the

maximum-likelihood, weighted-average hybrid WFS with that of a stand-alone SRI.

6.6 Wave-Optics Tests of Hybrid-WFS Performance

Wave-optics simulations provide a means of evaluating sensor performance on

atmospherically propagated fields, especially when beacons are scintillated by prop-

agation through volume-distributed atmospheric turbulence [3–5]. Therefore, to test

hybrid-WFS performance, numerically generated optical fields served as inputs to the

hybrid’s SRI and SH WFS’s as well as a stand-alone SRI WFS, which served as a

basis for comparison to the hybrid’s performance. The primary performance metric

employed was the phase-estimation Strehl ratio (PES), which measures how well a

WFS estimates the phase of an incident optical field. The PES is computed from the

field-estimation Strehl ratio defined as [64]

S

[

U(r′), Û(r′)
]

=

〈 ∣

∣

∣

∑N2
a

i=1U(r
′)Û∗(r′)

∣

∣

∣

2 〉

〈

∑N2
a

i=1 U(r
′)U∗(r′)

〉〈

∑N2
a

i=1 Û(r
′)Û∗(r′)

〉 , (180)
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where r′ is a coordinate vector indicating actuator locations, U(r′) contains the

complex-field values at the actuator locations, Û(r′) contains the estimated complex-

field values at the actuator locations, Na is the number of actuators across the DM,

the asterisk indicates complex conjugation, and angle brackets indicate ensemble av-

erages of the aperture-averaged values resulting from the summations. The PES is

computed by evaluating S{U(r′), exp[jφ̂(r′)]}, where φ̂(r′) contains the phase esti-

mates at the actuator locations. The PES was evaluated for the LS phase estimates

φ̂LS at the actuators as well as the LSPV-phase estimates φ̂LSPV linearly interpolated

up to the size of the input grid with coordinate vector r. The latter case evaluates

S{U(r), exp[jφ̂DM(r)]}, which provides a measure of how well the DM can correct the

input optical field based on the phase estimates output by the WFS, i.e. without am-

plitude correction. For this reason, the PES from interpolated LSPV-phase estimates

φ̂DM is referred to as the DM phase-fitting Strehl ratio (DMPFS).

6.6.1 Atmospheric Fields. To test hybrid-WFS performance, optical fields

were generated by numerically propagating an on-axis point source through 40 at-

mospheric realizations, each modeled by ten Kolmogorov phase screens. The phase

screens were evenly spaced throughout the propagation path and designed to provide

a total-path, spherical-wave atmospheric coherence width of r0 = 7.5cm. Since the

same simulated optical fields were used here as for the centroid-error study, further

details on the wave-optics simulations can be found in Sec. 4.3.

6.6.2 Simulation Results. Several different approaches to determining the

splitting parameter γ and weighting parameter a in the phase estimates for the hybrid

WFS were simulated using the architecture discussed in Sec. 6.4. For the first case,

the light was evenly split between the hybrid’s SH and SRI sensors, and the phase

estimates from each were evenly weighted. For the second case, the phase estimates

were evenly weighted, but the splitting was determined with an optimizing procedure

that found the value for γ that minimized Eq. (175). For the third case, the light was

evenly split between sensors, but the weighting was determined using the MLE for
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the SRI weighting given by Eq. (179). In the fourth case, an initial value of 0.5 was

used for γ to determine the MLE weighting, which was then used in Eq. (175) to find

the optimum γ, after which the MLE weights were determined using this optimum

value for γ in Eq. (179).

Figure 51 (a) shows the LS-phase-estimation Strehl ratio (LSPES) for these four

cases along with the LSPES for a comparable stand-alone SRI WFS. The hybrid WFS

split the same number of photons received by the stand-alone SRI between its SH and

SRI sensors. The simulations used a value of 10% for fiber-coupling efficiency and a

value of 200 for the number of photons per r20. The variances of the LSPES are also

shown in Fig. 51 (b). These plots show that the hybrid WFS performs better than a

comparable stand-alone SRI at estimating the LS phase for this case of low coupling

efficiency and low number of photons in all four cases of splitting and weighting.

Also, the results show that the splitting optimization and MLE weighting do improve

hybrid performance compared to arbitrarily setting the values of the splitting and

weighting. The performance gains of the hybrid are essentially the same throughout

the range of Rytov numbers used as is evident from Fig 52, which shows the LSPES

performance of the four hybrid approaches relative to the stand-alone SRI.

Figure 51 (b) shows that variability in the hybrid’s performance tends to be

much lower than that of the SRI, especially at Rytov numbers where the hybrid

has higher mean LSPES. The lower variance suggests greater stability in the hybrid,

which maintains higher levels of performance in atmospheric conditions that cause

the stand-alone SRI’s performance to drop significantly. This is further illustrated in

Fig. 53, which shows the LSPES for every realization in the case of no scintillation

(propagation distance L = 0km). The greater stability and decreased Strehl-ratio

variance is a key advantage of the hybrid WFS, since stability and Strehl-ratio variance

have been identified as challenges for the SRI [42]. Results in Fig. 53 (a) are for

the case of 10% coupling efficiency and 200 photons per r20, and Fig. 53 (b) shows

results for the case of 40% coupling efficiency and 3200 photons/r20. At the higher
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LS-phase-estimation Strehl ratio for four approaches to optimizing the hybrid WFS
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coupling efficiency and higher light level, the stand-alone SRI does quite well, but its

performance still occasionally drops significantly below that of the hybrid.

Figure 54 more clearly shows the improvement of the hybrid WFS’s LSPES

compared with comparable stand-alone SRI and SH WFS’s. The plot in Fig. 54 (a)

shows the LSPES for all three WFS’s, and the plot in (b) shows the percent im-

provement of the hybrid’s LSPES over both stand-alone WFS’s. The hybrid WFS’s

performance improvement over the stand-alone WFS’s is a result of the decrease in

phase variance inherent in the MLE approach discussed in Sec. 6.5. It is interest-

ing that the hybrid’s improvement over the stand-alone SRI does not significantly

depend on scintillation strength, whereas the hybrid WFS shows less improvement

over the stand-alone SH WFS in weaker scintillation with its improvement increas-

ing as scintillation strength increases. This is consistent with the fact that the SH

WFS’s phase error increases significantly with increasing scintillation strength, while

the SRI is less sensitive to scintillation strength. Also, the poor performance shown

by the SRI in Fig. 54 is a result of the low coupling efficiency used, which decreases

fringe visibility and increases the variance of the SRI’s phase estimates. For higher

fiber-coupling efficiency, e.g. ηc = 40%, the stand-alone SRI does much better than

the ηc = 10% case shown in Fig. 54 and outperforms the stand-alone SH WFS across

the whole range of scintillation strengths. However, even at 40% coupling efficiency,

the hybrid WFS still outperforms the stand-alone SRI. Also, for all values of coupling

efficiency examined, the simulation data shows the SRI’s sensitivity to scintillation

when photon noise is included, which is consistent with experimental results reported

by Corley and Rhoadarmer in [18]. The data in Fig. 54 resulted from applying 50/50

splitting with optimal weighting and was generated by simulations independent from

those that generated the results shown in Figs. 51 and 52.

It is important to emphasize that for these simulations, the atmospheric con-

ditions at each realization were independent of all other realizations. Therefore, the

hybrid’s ability to maintain high levels of performance when the SRI’s performance

degrades illustrates a significant potential advantage of the hybrid in closed-loop op-
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Figure 53: Stability of hybrid’s LSPES
LSPES for all realizations of the optimum splitting, optimum weighting approach to
the hybrid WFS in the absence of scintillation.

eration. In realistic operating conditions, it is reasonable to expect a given set of

atmospheric conditions to be present for many iterations of the AO control loop.

Also, in closed-loop AO systems, bad compensation lingers in the DM commands due

to the integral control law [53]. Therefore, steadier open-loop performance suggests

steadier closed-loop performance because the hybrid WFS would be able to main-

tain higher Strehl ratios even when the SRI’s performance drops. Furthermore, in

closed-loop operation, the hybrid WFS could collect real-time measurements such as

the SRI’s coupling efficiency and a running average of the residual phase variance of

the SH and SRI phase estimates to determine the optimum splitting parameter and

MLE weighting. Therefore, in closed-loop operation, the worst that the hybrid WFS

could do would be to match the performance of a comparable SRI.

The SRI has the unique ability to estimate the principal-value phase, which is

necessary for decreasing unwrapping errors in the presence of branch points [60]. Even

though the hybrid has been shown to outperform a stand-alone SRI at estimating the

LS phase, a natural question arises as to whether it can perform as well at producing

160



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6
ηc = 0.1; 200 photons/r2

0

Rytov Number
(a)

L
S
-P

E
S

 

 
S.A. SRI
S.A. SH
Hybrid

0 0.5 1 1.5
0

100

200

300

400

Rytov Number
(b)

L
S
P

E
S

%
Im

p
ro

ve
m

en
t

 

 

Relative to S.A. SRI
Relative to S.A. SH

Figure 54: Hybrid’s performance compared to SRI & SH WFS’s
LSPES for the SRI & SH WFS’s compared with that from the hybrid (a) and the
percent improvement shown by the hybrid over both stand-alone WFS’s.

161



0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

Rytov Number
(a)

D
M

P
F
S

ηc = 0.1; 200 photons/r2

0

 

 

SRI

85/15 Split, Opt.Wght.

0 0.5 1 1.5

0.2

0.4

0.6

0.8

1
ηc = 0.4; 3200 photons/r2

0

Rytov Number
(b)

D
M

P
F
S

Figure 55: Hybrid’s DMPFS Vs. Rytov number
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LSPV-unwrapped phase estimates when branch points are present. Figure 55 shows

the DMPFS metric computed using LSPV-unwrapped phase estimates compared with

a comparable stand-alone SRI. The optimization approach was slightly different for

the results shown here. Since the hybrid with 50% splitting and MLE weighting

performed best in the earlier studies, as shown in Fig. 51, a similar approach was

chosen for the LSPV-phase-estimation performance study, except 85% of the light

was sent to the hybrid’s SRI. This provided enough light to the SH for improving

the hybrid’s LS-phase estimates while at the same time ensuring plenty of light was

available to the SRI for estimation of the principal-value phase. Evaluation of the

individual realizations, however, shows the promise of improved hybrid performance

in closed-loop operation.
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Figure 56 (a) shows the DMPFS for all realizations in the case of 10% coupling

efficiency and low light, while Fig. 56 (b) shows the results for 40% coupling efficiency

and a higher light level. Both cases continue to show that the hybrid performance

remains high during realizations when the SRI’s performance dips significantly. Again,

this behavior promises increased stability for the hybrid WFS in closed-loop operation.

6.7 Conclusion

This work has developed a hybrid WFS that combines SH-WFS measurements

with SRI measurements in a robust, flexible architecture that shows performance

gains over a stand-alone SRI in open-loop wave-optics simulations for a range of atmo-

spheric conditions. The weighted-average MLE ensures the hybrid’s phase-estimation

algorithm favors the WFS most suited to the atmoshperic and beacon conditions at

hand. When the proposed architecture is placed in a closed-loop AO system, the

result should be much more stable operation and will also offer additional perfor-
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mance gains through real-time adjustments to the splitting parameter and weighting

coefficients based on measurements of SRI coupling efficiency and the variance of

the sensor measurements. The hybrid WFS performs especially well compared to a

stand-alone SRI in cases of low SRI coupling efficiency, which promises an improved

ability to close the AO control loop. Adding correlation-based capabilities to enable

phase estimation with extended beacons will further enhance the hybrid’s performance

and provide better AO compensation with uncooperative targets while avoiding com-

plicated solutions like a bootstrap beacon, Zernike tomography, or gradient-descent

tomography.
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VII. Conclusion

This work has shown, for the first time, that a hybrid WFS formed by combining a SH

WFS and an SRI performs better in open-loop simulation than a comparable stand-

aloneWFS. The improved performance was indicated by higher estimation Strehl ratio

for the least-squares phase than computed for a comparable SRI. Also, the variance

of estimation Strehl ratio was lower in the hybrid than for a stand-alone SRI in both

least-squares- and LSPV-reconstructed phase estimates. Further, on average the hy-

brid matched a stand-alone SRI’s LSPV-reconstructed-phase-estimation Strehl ratio

and had much higher Strehl ratios in atmospheric realizations that caused significant

degradation in the stand-alone SRI. The hybrid design was based on detailed analysis

that provided new models for the impact of photon noise coupled with scintillation

on phase-estimation errors for the SH WFS and the SRI. These noise models aided

in critical design choices and enabled the formation of a weighted-average, maximum-

likelihood phase-estimation algorithm for the hybrid. Also, for the first time, a noise

model for the SRI predicts its sensitivity to scintillation strength, which has been

observed in laboratory experiments but not previously predicted by theory [63].

7.1 Model of SH-WFS Centroid Error

Chapter IV presents a model for centroid error due to shot noise and scintilla-

tion. When scintillation is absent, the model reduces to the standard model assumed

for photon noise only. Also, for subaperture sizes smaller than the atmospheric co-

herence width, the model can be adjusted to account for aberrations caused by the

atmosphere. The model matches results of wave-optics simulations reasonably well.

If enough light is available, the centroid-error variance due to scintillation and photon

noise becomes relatively insensitive to scintillation. However, at low light levels, it is

significantly impacted by scintillation in the weak regime. Also, at low light levels

in small subapertures relative to r0, the centroid-error variance becomes a significant

part of the overall centroid variance.
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The model is presented in a general form for any shape of intensity distribution

and can be evaluated by numerically integrating over a complicated shape function or

by assuming a simple shape function to attain more analytical solutions. Previously

developed models that assumed constant intensity can be adjusted to account for

scintillation using the model presented here. Finally, the presented model of centroid-

error variance could be developed further by recognizing it as a conditional centroid

variance and applying the conditional centroid variance formula to examine the impact

of factors such as random centroid displacement and spot size.

7.2 Model of SRI Phase Error

Chapter V provides an analytical model for the shot-noise-induced error variance

of phase estimates computed from SRI measurements. The model was tested against

both Monte Carlo and wave-optics simulations and was shown to agree reasonably

well over a fairly wide range of atmospheric conditions. The model also predicted

the dependence of SRI estimation error on scintillation, which has been observed in

laboratory experiments.

7.3 Hybrid WFS

Chapter VI presents a hybrid WFS that combines SH-WFS measurements with

SRI measurements in a robust, flexible architecture that shows performance gains over

a stand-alone SRI in open-loop wave-optics simulations for a range of atmospheric

conditions. The noise models developed in Chapters IV and V enabled maximum-

likelihood analysis, which lead to a weighted-averaging approach to the hybrid WFS

that exploits the strengths and mitigates the weaknesses of each component WFS.

The hybrid WFS performed especially well compared to a stand-alone SRI in cases

of low SRI coupling efficiency, which promises an improved ability to close the AO

control loop.
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7.4 Research Challenges

A number of challenges were encountered and overcome during this research.

First, the choice of alignment geometry in the hybrid’s architecture was not a trivial

matter. The SH and SRI WFS’s could be aligned, and phase estimates could be

formed from their measurements in a number of different ways. For example, the ini-

tial hybrid-WFS architecture explored in this work did not reconstruct the SH slopes

into phase estimates, but instead combined the slope measurements with SRI piston

measurements to approximate the wavefront by tiled planes [22]. While this approach

was partially successful, the noise analysis for each WFS showed its limitations and

lead to the pursuit of other alignment geometries and estimation algorithms, which

ultimately lead to the approach presented in Ch. VI.

The noise models also turned out to be quite challenging. A great deal of effort

was involved in getting the models to match Monte Carlo and wave-optics simulation

results. This verification was essential to ensuring that the models were accurate,

especially since both models involved some amount of numerical computations. At

one point, the verification with simulation became something of an impediment as

issues related to undersampling caused simulation results that did not agree with

the model for the SH’s centroid error. However, the effort ultimately lead to much

better SH simulations as well as validation of the noise model. This issue motivated

the approach of first verifying the noise models with Monte Carlo simulations before

moving on to wave-optics simulations. The Monte Carlo and wave-optics simulations

for the SH noise study turned out to be so similar that only the wave-optics results

were presented in Ch. IV. However, the SRI wave-optics and Monte Carlo results did

not match each other and the noise model quite as well. In fact, the results of the

Monte Carlo simulations were used to reveal initial problems and subsequently correct

them, which ultimately lead to a better agreement between wave-optics results and

the noise model.
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Another issue that complicated the noise analysis is the fact that scintillation

remains poorly understood. Intensity statistics for scintillated optical fields have gen-

erally been developed based on heuristic arguments that conceptualize scintillation

effects as resulting from modulation and filtering processes [1, 71]. In fact, wave-

optics simulations have shown better agreement with experiment than theoretical

predictions [1, 25]. Therefore, it is difficult to evaluate the fidelity of wave-optics

results without anchoring them to experiments. However, as mentioned in Ch. I,

computer simulations, in contrast to hardware experiments, provided flexibility in de-

sign choices for hybrid architectures and enabled robust testing of the hybrid WFS’s

phase-estimation algorithms. Also, wave-optics simulations enabled investigation of

centroid error in conditions that could not be reproduced experimentally, for exam-

ple when photon levels are too low to guarantee shot-noise limited performance of

commercially available sensors.

7.5 Future Work

The proposed hybrid WFS should be tested in wave-optics simulations of closed-

loop AO performance. When the proposed hybrid architecture is placed in a closed-

loop AO system, the result should be much more stable operation and should also

offer performance gains through real-time adjustments to the splitting parameter

and weighting coefficients based on measurements of SRI coupling efficiency and the

variance of the sensor measurements. Closed-loop simulations will test this assertion

and may identify other challenges or potential benefits related to implementing a

hybrid WFS. If closed-loop simulations show promise for the hybrid WFS, the next

step would be building and testing a hybrid WFS prototype.

Exploiting the SH WFS’s capabilities to enable phase estimation with extended

beacons should be explored to determine whether the hybrid WFS might also be

able to perform adequately with extended beacons. This will require selection of a

suitable algorithm for wavefront sensing with extended beacons based on analysis of

the performance of extended-beacon approaches over a range of scintillation strengths
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and light levels. If possible, noise models similar to the one developed for centroid

error in Ch. IV would be helpful in this analysis. Also, the impact of extended beacons

on SRI performance needs to be better characterized to determine the range of beacon

sizes for which it might suffer as well as to determine whether the SRI may perform

acceptably with some cases of extended beacons.

A great deal of work could be done to evaluate different alignment geometries

and algorithms for the hybrid WFS. Time constraints did not allow investigation of

potential performance improvements related to the density of the SH subapertures.

Perhaps more SH subapertures with fewer pixels per subaperture would lead to better

hybrid performance than was shown here. Also, a modal approach to reconstruction

of SH slopes into phase may be preferred to the zonal approach employed in this work

and should be investigated. Additionally, the hybrid-WFS concept may eventually

provide the best performance if it is merged with multiple-DM AO. For example,

a multiple-DM, multiple-WFS approach may be better than multiple WFS’s with a

single DM or multiple DM’s with a single WFS.

Ultimately, performing AO in deep turbulence is a difficult problem, and it

seems likely that it will require a combination of approaches. Investigation of a hybrid

WFS is one step towards combining proven AO technologies in a new way to seek

performance improvements over a wider range of scintillation strengths, light levels,

and beacon characteristics. The complementary natures of the SH and SRI WFS’s

show promise in a hybrid approach. This work has hopefully blazed a trail for future

research to significantly advance AO technology by incorporating a SH/SRI hybrid

WFS.
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